Wasserstein-based fairness interpretability framework for machine
learning models
- URL: http://arxiv.org/abs/2011.03156v5
- Date: Tue, 8 Mar 2022 21:46:09 GMT
- Title: Wasserstein-based fairness interpretability framework for machine
learning models
- Authors: Alexey Miroshnikov, Konstandinos Kotsiopoulos, Ryan Franks, Arjun Ravi
Kannan
- Abstract summary: We introduce a fairness interpretability framework for measuring and explaining the bias in classification and regression models.
We measure the model bias across sub-population distributions in the model output using the Wasserstein metric.
We take into account the favorability of both the model and predictors with respect to the non-protected class.
- Score: 0.2519906683279153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this article is to introduce a fairness interpretability
framework for measuring and explaining the bias in classification and
regression models at the level of a distribution. In our work, we measure the
model bias across sub-population distributions in the model output using the
Wasserstein metric. To properly quantify the contributions of predictors, we
take into account the favorability of both the model and predictors with
respect to the non-protected class. The quantification is accomplished by the
use of transport theory, which gives rise to the decomposition of the model
bias and bias explanations to positive and negative contributions. To gain more
insight into the role of favorability and allow for additivity of bias
explanations, we adapt techniques from cooperative game theory.
Related papers
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
Text-to-Image (TTI) systems have come under increased scrutiny for social biases.
We investigate embedding spaces as a source of bias for TTI models.
We find that biased multimodal embeddings like CLIP can result in lower alignment scores for representationally balanced TTI models.
arXiv Detail & Related papers (2024-09-15T01:09:55Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - Deconfounding to Explanation Evaluation in Graph Neural Networks [136.73451468551656]
We argue that a distribution shift exists between the full graph and the subgraph, causing the out-of-distribution problem.
We propose Deconfounded Subgraph Evaluation (DSE) which assesses the causal effect of an explanatory subgraph on the model prediction.
arXiv Detail & Related papers (2022-01-21T18:05:00Z) - Model-agnostic bias mitigation methods with regressor distribution
control for Wasserstein-based fairness metrics [0.6509758931804478]
We propose a bias mitigation methodology based upon the construction of post-processed models with fairer regressor distributions.
Our novel methodology performs optimization in low-dimensional spaces and avoids expensive model retraining.
arXiv Detail & Related papers (2021-11-19T17:31:22Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
accuracies of models on one data distribution are approximately linear functions of the accuracies on another distribution.
We assume the probability that two models agree in their predictions is higher than what we can infer from their accuracy levels alone.
We show that a linear trend must occur when evaluating models on two distributions unless the size of the distribution shift is large.
arXiv Detail & Related papers (2020-12-31T07:24:30Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.