Latent Causal Invariant Model
- URL: http://arxiv.org/abs/2011.02203v4
- Date: Tue, 27 Apr 2021 23:28:44 GMT
- Title: Latent Causal Invariant Model
- Authors: Xinwei Sun, Botong Wu, Xiangyu Zheng, Chang Liu, Wei Chen, Tao Qin,
Tie-yan Liu
- Abstract summary: Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
- Score: 128.7508609492542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current supervised learning can learn spurious correlation during the
data-fitting process, imposing issues regarding interpretability,
out-of-distribution (OOD) generalization, and robustness. To avoid spurious
correlation, we propose a Latent Causal Invariance Model (LaCIM) which pursues
causal prediction. Specifically, we introduce latent variables that are
separated into (a) output-causative factors and (b) others that are spuriously
correlated to the output via confounders, to model the underlying causal
factors. We further assume the generating mechanisms from latent space to
observed data to be causally invariant. We give the identifiable claim of such
invariance, particularly the disentanglement of output-causative factors from
others, as a theoretical guarantee for precise inference and avoiding spurious
correlation. We propose a Variational-Bayesian-based method for estimation and
to optimize over the latent space for prediction. The utility of our approach
is verified by improved interpretability, prediction power on various OOD
scenarios (including healthcare) and robustness on security.
Related papers
- Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
We present a comprehensive simulation study investigating the impact of feature correlation on the assessment of variable importance.
While there is always no correlation between knockoff variables and its corresponding predictor variables, we prove that the correlation increases linearly beyond a certain correlation threshold between the predictor variables.
arXiv Detail & Related papers (2024-02-05T19:02:13Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)
In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts.
We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
Causal representation learning argues that factors of variation in a dataset are, in fact, causally related.
We propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model.
arXiv Detail & Related papers (2023-07-11T18:12:05Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
A spurious correlation' is the dependence of a model on some aspect of the input data that an analyst thinks shouldn't matter.
In machine learning, these have a know-it-when-you-see-it character.
We study stress testing using the tools of causal inference.
arXiv Detail & Related papers (2021-05-31T14:39:38Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.