User-Dependent Neural Sequence Models for Continuous-Time Event Data
- URL: http://arxiv.org/abs/2011.03231v1
- Date: Fri, 6 Nov 2020 08:32:57 GMT
- Title: User-Dependent Neural Sequence Models for Continuous-Time Event Data
- Authors: Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth
- Abstract summary: Continuous-time event data are common in applications such as individual behavior data, financial transactions, and medical health records.
Recurrent neural networks that parameterize time-varying intensity functions are the current state-of-the-art for predictive modeling with such data.
In this paper, we extend the broad class of neural marked point process models to mixtures of latent embeddings.
- Score: 27.45413274751265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous-time event data are common in applications such as individual
behavior data, financial transactions, and medical health records. Modeling
such data can be very challenging, in particular for applications with many
different types of events, since it requires a model to predict the event types
as well as the time of occurrence. Recurrent neural networks that parameterize
time-varying intensity functions are the current state-of-the-art for
predictive modeling with such data. These models typically assume that all
event sequences come from the same data distribution. However, in many
applications event sequences are generated by different sources, or users, and
their characteristics can be very different. In this paper, we extend the broad
class of neural marked point process models to mixtures of latent embeddings,
where each mixture component models the characteristic traits of a given user.
Our approach relies on augmenting these models with a latent variable that
encodes user characteristics, represented by a mixture model over user behavior
that is trained via amortized variational inference. We evaluate our methods on
four large real-world datasets and demonstrate systematic improvements from our
approach over existing work for a variety of predictive metrics such as
log-likelihood, next event ranking, and source-of-sequence identification.
Related papers
- On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
This dissertation focuses on using autoregressive models to answer complex probabilistic queries.
We develop a class of novel and efficient approximation techniques for marginalization in sequential models that are model-agnostic.
arXiv Detail & Related papers (2024-03-06T19:29:08Z) - Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
We develop a general framework for modeling set-valued data in continuous-time.
We also develop inference methods that can use such models to answer probabilistic queries.
arXiv Detail & Related papers (2023-12-22T20:16:10Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis [32.31161268928372]
We aim to incorporate heterogeneous user behaviors and social influences for behavior predictions.
This paper proposes a variant of Long-Short Term Memory (LSTM) which can consider context while a behavior sequence.
A residual learning-based decoder is designed to automatically construct multiple high-order cross features based on social behavior representation.
arXiv Detail & Related papers (2022-07-24T17:05:37Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Variational Neural Temporal Point Process [22.396329275957996]
A temporal point process is a process that predicts which type of events is likely to happen and when the event will occur.
We introduce the inference and the generative networks, and train a distribution of latent variable to deal with property on deep neural network.
We empirically demonstrate that our model can generalize the representations of various event types.
arXiv Detail & Related papers (2022-02-17T13:34:30Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion models for Imputation (CSDI) is a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data.
CSDI improves by 40-70% over existing probabilistic imputation methods on popular performance metrics.
In addition, C reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods.
arXiv Detail & Related papers (2021-07-07T22:20:24Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.