Variational Hyper RNN for Sequence Modeling
- URL: http://arxiv.org/abs/2002.10501v1
- Date: Mon, 24 Feb 2020 19:30:32 GMT
- Title: Variational Hyper RNN for Sequence Modeling
- Authors: Ruizhi Deng, Yanshuai Cao, Bo Chang, Leonid Sigal, Greg Mori, Marcus
A. Brubaker
- Abstract summary: We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
- Score: 69.0659591456772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel probabilistic sequence model that excels at
capturing high variability in time series data, both across sequences and
within an individual sequence. Our method uses temporal latent variables to
capture information about the underlying data pattern and dynamically decodes
the latent information into modifications of weights of the base decoder and
recurrent model. The efficacy of the proposed method is demonstrated on a range
of synthetic and real-world sequential data that exhibit large scale
variations, regime shifts, and complex dynamics.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A novel decomposed-ensemble time series forecasting framework: capturing
underlying volatility information [6.590038231008498]
We propose a novel time series forecasting paradigm that integrates decomposition with the capability to capture the underlying fluctuation information of the series.
Both the numerical data and the volatility information for each sub-mode are harnessed to train a neural network.
This network is adept at predicting the information of the sub-modes, and we aggregate the predictions of all sub-modes to generate the final output.
arXiv Detail & Related papers (2023-10-13T01:50:43Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
We propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations.
It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures.
A structured inference network is also designed for enabling inductive analysis.
arXiv Detail & Related papers (2021-03-03T04:10:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.