A fast learning algorithm for One-Class Slab Support Vector Machines
- URL: http://arxiv.org/abs/2011.03243v2
- Date: Mon, 3 May 2021 15:08:31 GMT
- Title: A fast learning algorithm for One-Class Slab Support Vector Machines
- Authors: Bagesh Kumar, Ayush Sinha, Sourin Chakrabarti, Prof. O.P.Vyas
- Abstract summary: This paper proposes fast training method for One Class Slab SVMs using an updated Sequential Minimal Optimization (SMO)
The results indicate that this training method scales better to large sets of training data than other Quadratic Programming (QP) solvers.
- Score: 1.1613446814180841
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One Class Slab Support Vector Machines (OCSSVM) have turned out to be better
in terms of accuracy in certain classes of classification problems than the
traditional SVMs and One Class SVMs or even other One class classifiers. This
paper proposes fast training method for One Class Slab SVMs using an updated
Sequential Minimal Optimization (SMO) which divides the multi variable
optimization problem to smaller sub problems of size two that can then be
solved analytically. The results indicate that this training method scales
better to large sets of training data than other Quadratic Programming (QP)
solvers.
Related papers
- Smooth Ranking SVM via Cutting-Plane Method [6.946903076677842]
We develop a prototype learning approach that relies on cutting-plane method, similar to Ranking SVM, to maximize AUC.
Our algorithm learns simpler models by iteratively introducing cutting planes, thus overfitting is prevented in an unconventional way.
Based on the experiments conducted on 73 binary classification datasets, our method yields the best test AUC in 25 datasets among its relevant competitors.
arXiv Detail & Related papers (2024-01-25T18:47:23Z) - Multi-class Support Vector Machine with Maximizing Minimum Margin [67.51047882637688]
Support Vector Machine (SVM) is a prominent machine learning technique widely applied in pattern recognition tasks.
We propose a novel method for multi-class SVM that incorporates pairwise class loss considerations and maximizes the minimum margin.
Empirical evaluations demonstrate the effectiveness and superiority of our proposed method over existing multi-classification methods.
arXiv Detail & Related papers (2023-12-11T18:09:55Z) - Efficient Training of One Class Classification-SVMs [0.0]
This study examines the use of a highly effective training method to conduct one-class classification.
In this paper, an effective algorithm for dual soft-margin one-class SVM training is presented.
arXiv Detail & Related papers (2023-09-28T15:35:16Z) - Majorization-Minimization for sparse SVMs [46.99165837639182]
Support Vector Machines (SVMs) were introduced for performing binary classification tasks, under a supervised framework, several decades ago.
They often outperform other supervised methods and remain one of the most popular approaches in the machine learning arena.
In this work, we investigate the training of SVMs through a smooth sparse-promoting-regularized squared hinge loss minimization.
arXiv Detail & Related papers (2023-08-31T17:03:16Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
Support vector machines (SVMs) are popular learning algorithms to deal with binary classification problems.
This article introduces EBCS-SVM: evolutionary bilevel cost-sensitive SVMs.
arXiv Detail & Related papers (2022-04-21T16:08:44Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Unsupervised Real Time Prediction of Faults Using the Support Vector
Machine [1.1852751647387592]
We show that the proposed solution can perform much better when using the SMO training algorithm.
The classification performance of this predictive model is considerably better than the SVM with and without SMO training algorithm.
arXiv Detail & Related papers (2020-12-30T04:27:10Z) - Equipment Failure Analysis for Oil and Gas Industry with an Ensemble
Predictive Model [0.0]
We show that the proposed solution can perform much better when using the SMO training algorithm.
The classification performance of this predictive model is considerably better than the SVM with and without SMO training algorithm.
arXiv Detail & Related papers (2020-12-30T04:14:15Z) - AML-SVM: Adaptive Multilevel Learning with Support Vector Machines [0.0]
This paper proposes an adaptive multilevel learning framework for the nonlinear SVM.
It improves the classification quality across the refinement process, and leverages multi-threaded parallel processing for better performance.
arXiv Detail & Related papers (2020-11-05T00:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.