Multi-Class Imbalanced Learning with Support Vector Machines via Differential Evolution
- URL: http://arxiv.org/abs/2502.14597v1
- Date: Thu, 20 Feb 2025 14:30:18 GMT
- Title: Multi-Class Imbalanced Learning with Support Vector Machines via Differential Evolution
- Authors: Zhong-Liang Zhang, Jie Yang, Jian-Ming Ru, Xiao-Xi Zhao, Xing-Gang Luo,
- Abstract summary: Support vector machine (SVM) is a powerful machine learning algorithm to handle classification tasks.
In this paper, we propose an improved SVM via Differential Evolution (i-SVM-DE) method to deal with it.
- Score: 4.877822002065298
- License:
- Abstract: Support vector machine (SVM) is a powerful machine learning algorithm to handle classification tasks. However, the classical SVM is developed for binary problems with the assumption of balanced datasets. Obviously, the multi-class imbalanced classification problems are more complex. In this paper, we propose an improved SVM via Differential Evolution (i-SVM-DE) method to deal with it. An improved SVM (i-SVM) model is proposed to handle the data imbalance by combining cost sensitive technique and separation margin modification in the constraints, which formalize a parameter optimization problem. By using one-versus-one (OVO) scheme, a multi-class problem is decomposed into a number of binary subproblems. A large optimization problem is formalized through concatenating the parameters in the binary subproblems. To find the optimal model effectively and learn the support vectors for each class simultaneously, an improved differential evolution (DE) algorithm is applied to solve this large optimization problem. Instead of the validation set, we propose the fitness functions to evaluate the learned model and obtain the optimal parameters in the search process of DE. A series of experiments are carried out to verify the benefits of our proposed method. The results indicate that i-SVM-DE is statistically superior by comparing with the other baseline methods.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) is one of the most popular compression methods that approximates a target matrix with smaller matrices.
Standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption.
We show that our method can perform better than current SOTA methods in neural-based language models.
arXiv Detail & Related papers (2022-11-02T00:58:02Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
Support vector machines (SVMs) are popular learning algorithms to deal with binary classification problems.
This article introduces EBCS-SVM: evolutionary bilevel cost-sensitive SVMs.
arXiv Detail & Related papers (2022-04-21T16:08:44Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature.
We adapt SVM as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups.
We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods.
arXiv Detail & Related papers (2021-02-23T20:22:56Z) - A fast learning algorithm for One-Class Slab Support Vector Machines [1.1613446814180841]
This paper proposes fast training method for One Class Slab SVMs using an updated Sequential Minimal Optimization (SMO)
The results indicate that this training method scales better to large sets of training data than other Quadratic Programming (QP) solvers.
arXiv Detail & Related papers (2020-11-06T09:16:39Z) - AML-SVM: Adaptive Multilevel Learning with Support Vector Machines [0.0]
This paper proposes an adaptive multilevel learning framework for the nonlinear SVM.
It improves the classification quality across the refinement process, and leverages multi-threaded parallel processing for better performance.
arXiv Detail & Related papers (2020-11-05T00:17:02Z) - Frank-Wolfe algorithm for learning SVM-type multi-category classifiers [0.7646713951724012]
Multi-category support vector machine (MC-SVM) is one of the most popular machine learning algorithms.
In this study, we developed a new optimization algorithm that can be applied to many of MC-SVM variants.
arXiv Detail & Related papers (2020-08-20T11:19:07Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
We propose an embedded feature selection method based on a min-max optimization problem.
By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado.
The efficiency and usefulness of our approach are tested on several benchmark data sets.
arXiv Detail & Related papers (2020-04-21T09:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.