Polariton response in the presence of Brownian dissipation from
molecular vibrations
- URL: http://arxiv.org/abs/2011.03421v2
- Date: Fri, 18 Dec 2020 15:15:37 GMT
- Title: Polariton response in the presence of Brownian dissipation from
molecular vibrations
- Authors: Kalle S. U. Kansanen, J. Jussi Toppari, Tero T. Heikkil\"a
- Abstract summary: We study the elastic response of a stationarily driven system strongly coupled with molecular excitons.
We show that the frequently used coupled oscillator model fails in describing this response.
Our results can be used as a sanity check of the experiments trying to "prove" results originating from strong coupling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the elastic response of a stationarily driven system of a cavity
field strongly coupled with molecular excitons, taking into account the main
dissipation channels due to the finite cavity linewidth and molecular
vibrations. We show that the frequently used coupled oscillator model fails in
describing this response especially due to the non-Lorentzian dissipation of
the molecules to their vibrations. Signatures of this failure are the
temperature dependent minimum point of the polariton peak splitting, uneven
polariton peak height at the minimum splitting, and the asymmetric shape of the
polariton peaks even at the experimentally accessed "zero-detuning" point.
Using a rather generic yet representative model of molecular vibrations, we
predict the polariton response in various conditions, depending on the
temperature, molecular Stokes shift and vibration frequencies, and the size of
the Rabi splitting. Our results can be used as a sanity check of the
experiments trying to "prove" results originating from strong coupling, such as
vacuum-enhanced chemical reaction rate.
Related papers
- Flipping electric dipole in the vibrational wave packet dynamics of
carbon monoxide [0.0]
Recently Rydberg atom-ion bound states have been observed using a high resolution ion microscope.
We investigate whether a similar behavior can also occur for ground state diatomic molecules.
arXiv Detail & Related papers (2024-03-06T21:32:22Z) - Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling [0.0]
We show that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit.
Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure.
arXiv Detail & Related papers (2023-06-09T16:18:51Z) - Field-linked resonances of polar molecules [1.5954600055547938]
We demonstrate a new type of scattering resonances that is universal for a wide range of polar molecules.
The so-called field-linked resonances occur in the scattering of microwave-dressed molecules due to stable macroscopic tetramer states.
Our result paves the way for realizing dipolar superfluids and molecular supersolids as well as assembling ultracold polyatomic molecules.
arXiv Detail & Related papers (2022-10-24T15:26:33Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Cavity-Altered Thermal Isomerization Rates and Dynamical Resonant
Localization in Vibro-Polaritonic Chemistry [0.0]
Reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions.
We study how strong coupling of an optical cavity mode to molecular vibrations affect the reactivity and how resonance behavior emerges.
arXiv Detail & Related papers (2021-09-28T09:06:08Z) - Cavity-modified unimolecular dissociation reactions via intramolecular
vibrational energy redistribution [0.0]
We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with unimolecular dissociation reaction rates.
In particular, when the cavity is initially empty, the dissociation rate decreases, while when the cavity is initially hotter than the molecule, the cavity can instead accelerate the reaction rate.
arXiv Detail & Related papers (2021-09-09T14:37:39Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.