論文の概要: Single-Node Attack for Fooling Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2011.03574v1
- Date: Fri, 6 Nov 2020 19:59:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 04:23:55.906699
- Title: Single-Node Attack for Fooling Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークの単一ノード攻撃
- Authors: Ben Finkelshtein, Chaim Baskin, Evgenii Zheltonozhskii, Uri Alon
- Abstract要約: グラフニューラルネットワーク(GNN)は、さまざまな領域で幅広い適用性を示している。
ソーシャルネットワークやプロダクトレコメンデーションなど、これらのドメインのいくつかは、悪意のあるユーザや行動に肥大している。
本稿では,GNNが単一ノード対逆例の極めて限られたシナリオに対して脆弱であることを示す。
- 参考スコア(独自算出の注目度): 5.7923858184309385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have shown broad applicability in a variety of
domains. Some of these domains, such as social networks and product
recommendations, are fertile ground for malicious users and behavior. In this
paper, we show that GNNs are vulnerable to the extremely limited scenario of a
single-node adversarial example, where the node cannot be picked by the
attacker. That is, an attacker can force the GNN to classify any target node to
a chosen label by only slightly perturbing another single arbitrary node in the
graph, even when not being able to pick that specific attacker node. When the
adversary is allowed to pick a specific attacker node, the attack is even more
effective. We show that this attack is effective across various GNN types, such
as GraphSAGE, GCN, GAT, and GIN, across a variety of real-world datasets, and
as a targeted and a non-targeted attack. Our code is available at
https://github.com/benfinkelshtein/SINGLE .
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまな領域で幅広い適用性を示している。
ソーシャルネットワークやプロダクトレコメンデーションなど、これらのドメインのいくつかは、悪意のあるユーザや行動に肥大している。
本稿では,GNNが攻撃者がノードを選択することができない単一ノード対逆例の極めて限られたシナリオに対して脆弱であることを示す。
つまり、攻撃者は特定の攻撃対象ノードを選択できない場合でも、グラフ内の別の任意のノードをわずかに摂動させることで、gnnに任意のターゲットノードを選択ラベルに分類させることができる。
敵が特定の攻撃ノードを選択することが許された場合、攻撃はさらに効果的である。
この攻撃は、GraphSAGE、GCN、GAT、GINなどの様々なGNNタイプ、さまざまな現実世界のデータセット、ターゲットと非ターゲットの攻撃に対して効果的であることを示す。
私たちのコードはhttps://github.com/benfinkelshtein/SINGLEで利用可能です。
関連論文リスト
- Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理するように設計されたニューラルネットワークの一種である。
これまでの研究によると、トランスダクティブGNNは一連のプライバシー攻撃に弱い。
本稿では,リンク盗難攻撃のレンズを通して,誘導型GNNの包括的プライバシー分析を行う。
論文 参考訳(メタデータ) (2024-05-09T14:03:52Z) - Hard Label Black Box Node Injection Attack on Graph Neural Networks [7.176182084359572]
グラフニューラルネットワークにおける非ターゲット型ハードラベルブラックボックスノードインジェクション攻撃を提案する。
我々の攻撃は、既存のエッジ摂動攻撃に基づいており、ノード注入攻撃を定式化するために最適化プロセスを制限する。
本研究では,3つのデータセットを用いて攻撃性能を評価する。
論文 参考訳(メタデータ) (2023-11-22T09:02:04Z) - Node Injection for Class-specific Network Poisoning [16.177991267568125]
グラフニューラルネットワーク(GNN)は、下流タスクのパフォーマンスを補助するリッチネットワーク表現を学習する上で強力である。
近年の研究では、GNNはノード注入やネットワーク摂動を含む敵攻撃に弱いことが示されている。
そこで我々は,攻撃者がターゲットクラス内の特定のノードを,ノードインジェクションを用いて別のクラスに誤分類することを目的とした,グラフに対するクラス固有の毒物攻撃という,新たな問題文を提案する。
論文 参考訳(メタデータ) (2023-01-28T19:24:03Z) - Sparse Vicious Attacks on Graph Neural Networks [3.246307337376473]
この研究は、GNNベースのリンク予測モデルに対する特定のホワイトボックス攻撃に焦点を当てている。
本稿では,このタイプのリンク予測攻撃をマウントする新しいフレームワークと手法であるSAVAGEを提案する。
実世界のデータセットと合成データセットを用いて行った実験は、SAVAGEを通じて実施された敵攻撃が実際に高い攻撃成功率を達成することを示した。
論文 参考訳(メタデータ) (2022-09-20T12:51:24Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
グラフニューラルネットワーク(GNN)は多くのグラフベースのタスクで最先端のパフォーマンスを達成した。
攻撃者はグラフ構造をわずかに摂動させることでGNNモデルを誤解させることができる。
本稿では,構造摂動を伴うGNNに対するブラックボックス攻撃と理論的保証について考察する。
論文 参考訳(メタデータ) (2022-05-07T04:17:25Z) - Robustness of Graph Neural Networks at Scale [63.45769413975601]
我々は,グラフニューラルネットワーク(GNN)を大規模に攻撃し,防御する方法を研究する。
効率のよい表現を維持するために,2つのスパシティ対応一階最適化攻撃を提案する。
GNNに対する世界的な攻撃には、一般的なサロゲート損失が適していないことを示す。
論文 参考訳(メタデータ) (2021-10-26T21:31:17Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to
Any-Layer Graph Neural Networks via Influence Function [62.89388227354517]
グラフデータから学習する主流手法であるグラフニューラルネットワーク(GNN)は、グラフ回避攻撃に対して脆弱である。
既存の作業には、1)2層GNNを直接攻撃すること、2)非効率であること、3)GNNモデルパラメータの完全あるいは一部を知る必要があること、の2つの欠点の少なくとも1つがある。
本報告では,エフェクトベースの非効率,直接的,制限されたブラックボックス回避攻撃を,幻影層GNNに対して提案する。
論文 参考訳(メタデータ) (2020-09-01T03:24:51Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z) - Indirect Adversarial Attacks via Poisoning Neighbors for Graph
Convolutional Networks [0.76146285961466]
グラフの畳み込みを無視すると、ノードの分類結果は隣人を中毒させることで影響を受ける。
我々は、1ホップの隣人だけでなく、目標から遠く離れた場所でも有効である強い敵の摂動を生成する。
提案手法は,ターゲットから2ホップ以内に99%の攻撃成功率を示す。
論文 参考訳(メタデータ) (2020-02-19T05:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。