論文の概要: Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering
- arxiv url: http://arxiv.org/abs/2011.03863v2
- Date: Mon, 14 Dec 2020 22:27:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 22:17:38.150976
- Title: Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering
- Title(参考訳): コモンセンス質問応答におけるゼロショット評価のための知識駆動データ構築
- Authors: Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan Bisk, Eric
Nyberg, Alessandro Oltramari
- Abstract要約: 本稿では,共通認識課題にまたがるゼロショット質問応答のための新しいニューラルシンボリック・フレームワークを提案する。
言語モデル、トレーニング体制、知識ソース、データ生成戦略のセットを変えて、タスク間の影響を測定します。
個別の知識グラフは特定のタスクに適しているが、グローバルな知識グラフはさまざまなタスクに対して一貫した利得をもたらす。
- 参考スコア(独自算出の注目度): 80.60605604261416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in pre-trained neural language modeling have led to leaps
in accuracy on commonsense question-answering benchmarks. However, there is
increasing concern that models overfit to specific tasks, without learning to
utilize external knowledge or perform general semantic reasoning. In contrast,
zero-shot evaluations have shown promise as a more robust measure of a model's
general reasoning abilities. In this paper, we propose a novel neuro-symbolic
framework for zero-shot question answering across commonsense tasks. Guided by
a set of hypotheses, the framework studies how to transform various
pre-existing knowledge resources into a form that is most effective for
pre-training models. We vary the set of language models, training regimes,
knowledge sources, and data generation strategies, and measure their impact
across tasks. Extending on prior work, we devise and compare four constrained
distractor-sampling strategies. We provide empirical results across five
commonsense question-answering tasks with data generated from five external
knowledge resources. We show that, while an individual knowledge graph is
better suited for specific tasks, a global knowledge graph brings consistent
gains across different tasks. In addition, both preserving the structure of the
task as well as generating fair and informative questions help language models
learn more effectively.
- Abstract(参考訳): 事前学習されたニューラルネットワークモデリングの最近の進歩は、commonsense question-answeringベンチマークにおける精度の飛躍につながった。
しかし、外部知識を活用したり、一般的な意味論的推論を実行することを学ばずに、モデルが特定のタスクに過度に適合するという懸念が高まっている。
対照的に、ゼロショット評価はモデルの一般的な推論能力のより堅牢な尺度として期待されている。
本稿では,コモンセンスタスクにまたがるゼロショット質問応答のための新しいニューロシンボリックフレームワークを提案する。
一連の仮説によって導かれたこのフレームワークは、既存の知識資源を事前学習モデルに最も効果的な形式に変換する方法を研究する。
言語モデル、トレーニング体制、知識ソース、データ生成戦略のセットを変えて、タスク間の影響を測定します。
先行作業を拡張して、4つの制約付きイントラクタサンプリング戦略を考案し比較する。
5つの外部知識リソースから生成したデータを用いて,5つのコモンセンス質問応答タスクにおいて経験的な結果を提供する。
個別の知識グラフは特定のタスクに適しているが、グローバルな知識グラフはさまざまなタスクに対して一貫した利得をもたらす。
さらに、タスクの構造を保存することと、公平で情報的な質問を生成することは、言語モデルをより効果的に学習するのに役立つ。
関連論文リスト
- MoMA: Momentum Contrastive Learning with Multi-head Attention-based
Knowledge Distillation for Histopathology Image Analysis [5.396167537615578]
計算病理学における特定のタスクに関して、品質データの欠如は一般的な問題である。
そこで本研究では,既存のモデルを用いて新たなターゲットモデルを学習する知識蒸留手法を提案する。
本研究では,教師モデルから学習対象モデルを学習するために,学習者・教師の枠組みを用いる。
論文 参考訳(メタデータ) (2023-08-31T08:54:59Z) - The Effect of Masking Strategies on Knowledge Retention by Language
Models [9.130890741447422]
本稿では,事前学習タスクが言語モデルによって捉え,忘れられた知識量に与える影響を理解することを目的とする。
我々は,実際の質問に答える能力を測定することによって,モデルの知識保持を検証した。
我々の研究結果は、あるタスクを実行する能力と同様に、そのタスクでトレーニングされた知識は、あるモデルが別のタスクを実行するように訓練されたときに忘れられることを示した。
論文 参考訳(メタデータ) (2023-06-12T15:35:23Z) - RECKONING: Reasoning through Dynamic Knowledge Encoding [51.076603338764706]
言語モデルは、文脈の一部として提供される知識について推論することで、質問に答えることができることを示す。
これらの状況では、モデルは質問に答えるために必要な知識を区別することができない。
我々は、与えられた文脈知識をモデルのパラメータに折り畳み、より堅牢に推論するようにモデルに教えることを提案する。
論文 参考訳(メタデータ) (2023-05-10T17:54:51Z) - The KITMUS Test: Evaluating Knowledge Integration from Multiple Sources
in Natural Language Understanding Systems [87.3207729953778]
我々は、データセット上で最先端のコア参照解決モデルを評価する。
いくつかのモデルは、事前訓練時間と推論時間の両方で観察された知識について、オンザフライで推論するのに苦労している。
それでも、最高のパフォーマンスモデルでさえ、推論時にのみ提示される知識を確実に統合するのは難しいようです。
論文 参考訳(メタデータ) (2022-12-15T23:26:54Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
本稿では、市販QAモデルアーキテクチャと互換性のあるコモンセンスフレームワークの自己教師型双方向表現学習を提案する。
このフレームワークは5つの自己教師型タスクから構成されており、リッチコモンセンスを含むコンテキストから追加のトレーニング信号を完全に活用するようモデルに強制する。
elBERtoは、単純な語彙的類似性比較が役に立たないような、アウト・オブ・パラグラフや非エフェクトな問題に対して、大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-17T16:23:45Z) - Unsupervised Commonsense Question Answering with Self-Talk [71.63983121558843]
本稿では,コモンセンスタスクの代替として,セルフトークに基づく教師なしフレームワークを提案する。
探索に基づく探索学習にインスパイアされた我々のアプローチは、質問を求める多くの情報で言語モデルに問い合わせる。
実験結果から,ゼロショット言語モデルベースラインの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-11T20:43:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。