Adaptive Linear Span Network for Object Skeleton Detection
- URL: http://arxiv.org/abs/2011.03972v1
- Date: Sun, 8 Nov 2020 12:51:14 GMT
- Title: Adaptive Linear Span Network for Object Skeleton Detection
- Authors: Chang Liu and Yunjie Tian and Jianbin Jiao and Qixiang Ye
- Abstract summary: We propose adaptive linear span network (AdaLSN) to automatically configure and integrate scale-aware features for object skeleton detection.
AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off.
It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction.
- Score: 56.78705071830965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional networks for object skeleton detection are usually hand-crafted.
Although effective, they require intensive priori knowledge to configure
representative features for objects in different scale granularity.In this
paper, we propose adaptive linear span network (AdaLSN), driven by neural
architecture search (NAS), to automatically configure and integrate scale-aware
features for object skeleton detection. AdaLSN is formulated with the theory of
linear span, which provides one of the earliest explanations for multi-scale
deep feature fusion. AdaLSN is materialized by defining a mixed unit-pyramid
search space, which goes beyond many existing search spaces using unit-level or
pyramid-level features.Within the mixed space, we apply genetic architecture
search to jointly optimize unit-level operations and pyramid-level connections
for adaptive feature space expansion. AdaLSN substantiates its versatility by
achieving significantly higher accuracy and latency trade-off compared with
state-of-the-arts. It also demonstrates general applicability to image-to-mask
tasks such as edge detection and road extraction. Code is available at
\href{https://github.com/sunsmarterjie/SDL-Skeleton}{\color{magenta}github.com/sunsmarterjie/SDL-Skeleton}.
Related papers
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
We propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection.
Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies.
Our HiDAnet performs favorably over the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2023-01-18T10:00:59Z) - Lightweight Salient Object Detection in Optical Remote-Sensing Images
via Semantic Matching and Edge Alignment [61.45639694373033]
We propose a novel lightweight network for optical remote sensing images (ORSI-SOD) based on semantic matching and edge alignment, termed SeaNet.
Specifically, SeaNet includes a lightweight MobileNet-V2 for feature extraction, a dynamic semantic matching module (DSMM) for high-level features, and a portable decoder for inference.
arXiv Detail & Related papers (2023-01-07T04:33:51Z) - AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation [96.29533512606078]
We present AutoPose, a novel neural architecture search(NAS) framework.
It is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation.
arXiv Detail & Related papers (2020-08-16T22:27:43Z) - A novel Region of Interest Extraction Layer for Instance Segmentation [3.5493798890908104]
This paper is motivated by the need to overcome the limitations of existing RoI extractors.
The proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance.
GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks.
arXiv Detail & Related papers (2020-04-28T17:07:32Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.