On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology
- URL: http://arxiv.org/abs/2311.04592v2
- Date: Thu, 9 Nov 2023 15:29:49 GMT
- Title: On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology
- Authors: Suryaka Suresh, Bishshoy Das, Vinayak Abrol, Sumantra Dutta Roy
- Abstract summary: We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
- Score: 9.537910170141467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study how the topology of feature embedding space changes as it passes
through the layers of a well-trained deep neural network (DNN) through Betti
numbers. Motivated by existing studies using simplicial complexes on shallow
fully connected networks (FCN), we present an extended analysis using Cubical
homology instead, with a variety of popular deep architectures and real image
datasets. We demonstrate that as depth increases, a topologically complicated
dataset is transformed into a simple one, resulting in Betti numbers attaining
their lowest possible value. The rate of decay in topological complexity (as a
metric) helps quantify the impact of architectural choices on the
generalization ability. Interestingly from a representation learning
perspective, we highlight several invariances such as topological invariance of
(1) an architecture on similar datasets; (2) embedding space of a dataset for
architectures of variable depth; (3) embedding space to input resolution/size,
and (4) data sub-sampling. In order to further demonstrate the link between
expressivity \& the generalization capability of a network, we consider the
task of ranking pre-trained models for downstream classification task (transfer
learning). Compared to existing approaches, the proposed metric has a better
correlation to the actually achievable accuracy via fine-tuning the pre-trained
model.
Related papers
- Deep Learning as Ricci Flow [38.27936710747996]
Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data.
We show that the transformations performed by DNNs during classification tasks have parallels to those expected under Hamilton's Ricci flow.
Our findings motivate the use of tools from differential and discrete geometry to the problem of explainability in deep learning.
arXiv Detail & Related papers (2024-04-22T15:12:47Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - Image Classification using Combination of Topological Features and
Neural Networks [1.0323063834827417]
We use the persistent homology method, a technique in topological data analysis (TDA), to extract essential topological features from the data space.
This was carried out with the aim of classifying images from multiple classes in the MNIST dataset.
Our approach inserts topological features into deep learning approaches composed by single and two-streams neural networks.
arXiv Detail & Related papers (2023-11-10T20:05:40Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
We first show that a three-layer neural network can be designed to approximate an indicator function over a compact set.
This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure.
We prove the universal approximation property of three-layer ReLU networks using our topological approach.
arXiv Detail & Related papers (2023-05-25T14:17:15Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.