Unwrapping The Black Box of Deep ReLU Networks: Interpretability,
Diagnostics, and Simplification
- URL: http://arxiv.org/abs/2011.04041v1
- Date: Sun, 8 Nov 2020 18:09:36 GMT
- Title: Unwrapping The Black Box of Deep ReLU Networks: Interpretability,
Diagnostics, and Simplification
- Authors: Agus Sudjianto, William Knauth, Rahul Singh, Zebin Yang, Aijun Zhang
- Abstract summary: Deep neural networks (DNNs) have achieved great success in learning complex patterns with strong predictive power.
They are often thought of as "black box" models without a sufficient level of transparency and interpretability.
This paper aims to unwrap the black box of deep ReLU networks through local linear representation.
- Score: 9.166160560427919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deep neural networks (DNNs) have achieved great success in learning
complex patterns with strong predictive power, but they are often thought of as
"black box" models without a sufficient level of transparency and
interpretability. It is important to demystify the DNNs with rigorous
mathematics and practical tools, especially when they are used for
mission-critical applications. This paper aims to unwrap the black box of deep
ReLU networks through local linear representation, which utilizes the
activation pattern and disentangles the complex network into an equivalent set
of local linear models (LLMs). We develop a convenient LLM-based toolkit for
interpretability, diagnostics, and simplification of a pre-trained deep ReLU
network. We propose the local linear profile plot and other visualization
methods for interpretation and diagnostics, and an effective merging strategy
for network simplification. The proposed methods are demonstrated by simulation
examples, benchmark datasets, and a real case study in home lending credit risk
assessment.
Related papers
- Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Building a Graph-based Deep Learning network model from captured traffic
traces [4.671648049111933]
State of the art network models are based or depend on Discrete Event Simulation (DES)
DES is highly accurate, it is also computationally costly and cumbersome to parallelize, making it unpractical to simulate high performance networks.
We propose a Graph Neural Network (GNN)-based solution specifically designed to better capture the complexities of real network scenarios.
arXiv Detail & Related papers (2023-10-18T11:16:32Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - Lipschitz Bound Analysis of Neural Networks [0.0]
Lipschitz Bound Estimation is an effective method of regularizing deep neural networks to make them robust against adversarial attacks.
In this paper, we highlight the significant gap in obtaining a non-trivial Lipschitz bound certificate for Convolutional Neural Networks (CNNs)
We also show that unrolling Convolutional layers or Toeplitz matrices can be employed to convert Convolutional Neural Networks (CNNs) to a Fully Connected Network.
arXiv Detail & Related papers (2022-07-14T23:40:22Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
We recognize that the non-linear behavior of the ReLU function gives rise to a natural clustering.
We propose a method to increase the level of interpretability of a fully connected feedforward ReLU neural network.
arXiv Detail & Related papers (2021-10-13T09:24:11Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - The Self-Simplifying Machine: Exploiting the Structure of Piecewise
Linear Neural Networks to Create Interpretable Models [0.0]
We introduce novel methodology toward simplification and increased interpretability of Piecewise Linear Neural Networks for classification tasks.
Our methods include the use of a trained, deep network to produce a well-performing, single-hidden-layer network without further training.
On these methods, we conduct preliminary studies of model performance, as well as a case study on Wells Fargo's Home Lending dataset.
arXiv Detail & Related papers (2020-12-02T16:02:14Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.