Real-time object detection method based on improved YOLOv4-tiny
- URL: http://arxiv.org/abs/2011.04244v2
- Date: Wed, 2 Dec 2020 09:19:32 GMT
- Title: Real-time object detection method based on improved YOLOv4-tiny
- Authors: Zicong Jiang, Liquan Zhao, Shuaiyang Li, Yanfei Jia
- Abstract summary: YOLOv4-tiny is proposed based on YOLOv4 to simple the network structure and reduce parameters, which makes it be suitable for developing on the mobile and embedded devices.
It firstly uses two ResBlock-D modules in ResNet-D network instead of two CSPBlock modules in Yolov4-tiny, which reduces the computation complexity.
In the design of auxiliary network, two consecutive 3x3 convolutions are used to obtain 5x5 receptive fields to extract global features, and channel attention and spatial attention are also used to extract more effective information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The "You only look once v4"(YOLOv4) is one type of object detection methods
in deep learning. YOLOv4-tiny is proposed based on YOLOv4 to simple the network
structure and reduce parameters, which makes it be suitable for developing on
the mobile and embedded devices. To improve the real-time of object detection,
a fast object detection method is proposed based on YOLOv4-tiny. It firstly
uses two ResBlock-D modules in ResNet-D network instead of two CSPBlock modules
in Yolov4-tiny, which reduces the computation complexity. Secondly, it designs
an auxiliary residual network block to extract more feature information of
object to reduce detection error. In the design of auxiliary network, two
consecutive 3x3 convolutions are used to obtain 5x5 receptive fields to extract
global features, and channel attention and spatial attention are also used to
extract more effective information. In the end, it merges the auxiliary network
and backbone network to construct the whole network structure of improved
YOLOv4-tiny. Simulation results show that the proposed method has faster object
detection than YOLOv4-tiny and YOLOv3-tiny, and almost the same mean value of
average precision as the YOLOv4-tiny. It is more suitable for real-time object
detection.
Related papers
- SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) is designed for scenarios involving numerous small objects.
SOD-YOLOv8 significantly improves small object detection, surpassing widely used models in various metrics.
In dynamic real-world traffic scenes, SOD-YOLOv8 demonstrated notable improvements in diverse conditions.
arXiv Detail & Related papers (2024-08-08T23:05:25Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - Fostc3net:A Lightweight YOLOv5 Based On the Network Structure Optimization [11.969138981034247]
This paper presents an enhanced lightweight YOLOv5 technique customized for mobile devices.
The proposed model achieves a 1% increase in detection accuracy, a 13% reduction in FLOPs, and a 26% decrease in model parameters compared to the existing YOLOv5.
arXiv Detail & Related papers (2024-03-20T16:07:04Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - An advanced YOLOv3 method for small object detection [2.906551456030129]
This paper introduces an improved YOLOv3 algorithm for small object detection.
In the proposed method, the dilated convolutions mish (DCM) module is introduced into the backbone network of YOLOv3.
In the neck network of YOLOv3, the convolutional block attention module (CBAM) and multi-level fusion module are introduced.
arXiv Detail & Related papers (2022-12-06T07:58:21Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
We propose a new Neighbor Erasing and Transferring (NET) mechanism to reconfigure the pyramid features and explore scale-aware features.
A single-shot network called NETNet is constructed for scale-aware object detection.
arXiv Detail & Related papers (2020-01-18T15:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.