Fostc3net:A Lightweight YOLOv5 Based On the Network Structure Optimization
- URL: http://arxiv.org/abs/2403.13703v1
- Date: Wed, 20 Mar 2024 16:07:04 GMT
- Title: Fostc3net:A Lightweight YOLOv5 Based On the Network Structure Optimization
- Authors: Danqing Ma, Shaojie Li, Bo Dang, Hengyi Zang, Xinqi Dong,
- Abstract summary: This paper presents an enhanced lightweight YOLOv5 technique customized for mobile devices.
The proposed model achieves a 1% increase in detection accuracy, a 13% reduction in FLOPs, and a 26% decrease in model parameters compared to the existing YOLOv5.
- Score: 11.969138981034247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transmission line detection technology is crucial for automatic monitoring and ensuring the safety of electrical facilities. The YOLOv5 series is currently one of the most advanced and widely used methods for object detection. However, it faces inherent challenges, such as high computational load on devices and insufficient detection accuracy. To address these concerns, this paper presents an enhanced lightweight YOLOv5 technique customized for mobile devices, specifically intended for identifying objects associated with transmission lines. The C3Ghost module is integrated into the convolutional network of YOLOv5 to reduce floating point operations per second (FLOPs) in the feature channel fusion process and improve feature expression performance. In addition, a FasterNet module is introduced to replace the c3 module in the YOLOv5 Backbone. The FasterNet module uses Partial Convolutions to process only a portion of the input channels, improving feature extraction efficiency and reducing computational overhead. To address the imbalance between simple and challenging samples in the dataset and the diversity of aspect ratios of bounding boxes, the wIoU v3 LOSS is adopted as the loss function. To validate the performance of the proposed approach, Experiments are conducted on a custom dataset of transmission line poles. The results show that the proposed model achieves a 1% increase in detection accuracy, a 13% reduction in FLOPs, and a 26% decrease in model parameters compared to the existing YOLOv5.In the ablation experiment, it was also discovered that while the Fastnet module and the CSghost module improved the precision of the original YOLOv5 baseline model, they caused a decrease in the mAP@.5-.95 metric. However, the improvement of the wIoUv3 loss function significantly mitigated the decline of the mAP@.5-.95 metric.
Related papers
- PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - HIC-YOLOv5: Improved YOLOv5 For Small Object Detection [2.4780916008623834]
An improved YOLOv5 model: HIC-YOLOv5 is proposed to address the aforementioned problems.
An involution block is adopted between the backbone and neck to increase channel information of the feature map.
Our result shows that HIC-YOLOv5 has improved mAP@[.5:.95] by 6.42% and mAP@0.5 by 9.38% on VisDrone 2019-DET dataset.
arXiv Detail & Related papers (2023-09-28T12:40:36Z) - Underwater target detection based on improved YOLOv7 [7.264267222876267]
This study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection.
The proposed network utilizes an ACmixBlock module to replace the 3x3 convolution block in the E-ELAN structure.
A ResNet-ACmix module is designed to avoid feature information loss and reduce computation.
arXiv Detail & Related papers (2023-02-14T09:50:52Z) - CNN-transformer mixed model for object detection [3.5897534810405403]
In this paper, I propose a convolutional module with a transformer.
It aims to improve the recognition accuracy of the model by fusing the detailed features extracted by CNN with the global features extracted by a transformer.
After 100 rounds of training on the Pascal VOC dataset, the accuracy of the results reached 81%, which is 4.6 better than the faster RCNN[4] using resnet101[5] as the backbone.
arXiv Detail & Related papers (2022-12-13T16:35:35Z) - An advanced YOLOv3 method for small object detection [2.906551456030129]
This paper introduces an improved YOLOv3 algorithm for small object detection.
In the proposed method, the dilated convolutions mish (DCM) module is introduced into the backbone network of YOLOv3.
In the neck network of YOLOv3, the convolutional block attention module (CBAM) and multi-level fusion module are introduced.
arXiv Detail & Related papers (2022-12-06T07:58:21Z) - Rethinking IoU-based Optimization for Single-stage 3D Object Detection [103.83141677242871]
We propose a Rotation-Decoupled IoU (RDIoU) method that can mitigate the rotation-sensitivity issue.
Our RDIoU simplifies the complex interactions of regression parameters by decoupling the rotation variable as an independent term.
arXiv Detail & Related papers (2022-07-19T15:35:23Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
Dilation convolution is a critical mutant of standard convolution neural network to control effective receptive fields and handle large scale variance of objects.
We propose a new mutant of dilated convolution, namely inception (dilated) convolution where the convolutions have independent dilation among different axes, channels and layers.
We explore a practical method for fitting the complex inception convolution to the data, a simple while effective dilation search algorithm(EDO) based on statistical optimization is developed.
arXiv Detail & Related papers (2020-12-25T14:58:35Z) - Real-time object detection method based on improved YOLOv4-tiny [0.0]
YOLOv4-tiny is proposed based on YOLOv4 to simple the network structure and reduce parameters, which makes it be suitable for developing on the mobile and embedded devices.
It firstly uses two ResBlock-D modules in ResNet-D network instead of two CSPBlock modules in Yolov4-tiny, which reduces the computation complexity.
In the design of auxiliary network, two consecutive 3x3 convolutions are used to obtain 5x5 receptive fields to extract global features, and channel attention and spatial attention are also used to extract more effective information.
arXiv Detail & Related papers (2020-11-09T08:26:28Z) - Pruning Redundant Mappings in Transformer Models via Spectral-Normalized
Identity Prior [54.629850694790036]
spectral-normalized identity priors (SNIP) is a structured pruning approach that penalizes an entire residual module in a Transformer model toward an identity mapping.
We conduct experiments with BERT on 5 GLUE benchmark tasks to demonstrate that SNIP achieves effective pruning results while maintaining comparable performance.
arXiv Detail & Related papers (2020-10-05T05:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.