EDEN: Multimodal Synthetic Dataset of Enclosed GarDEN Scenes
- URL: http://arxiv.org/abs/2011.04389v2
- Date: Tue, 10 Nov 2020 20:11:31 GMT
- Title: EDEN: Multimodal Synthetic Dataset of Enclosed GarDEN Scenes
- Authors: Hoang-An Le, Thomas Mensink, Partha Das, Sezer Karaoglu, Theo Gevers
- Abstract summary: This dataset features more than 300K images captured from more than 100 garden models.
Each image is annotated with various low/high-level vision modalities, including semantic segmentation, depth, surface normals, intrinsic colors, and optical flow.
Experimental results on the state-of-the-art methods for semantic segmentation and monocular depth prediction, two important tasks in computer vision, show positive impact of pre-training deep networks on our dataset for unstructured natural scenes.
- Score: 21.695100437184507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large-scale datasets for outdoor scenes are mostly designed for
urban driving problems. The scenes are highly structured and semantically
different from scenarios seen in nature-centered scenes such as gardens or
parks. To promote machine learning methods for nature-oriented applications,
such as agriculture and gardening, we propose the multimodal synthetic dataset
for Enclosed garDEN scenes (EDEN). The dataset features more than 300K images
captured from more than 100 garden models. Each image is annotated with various
low/high-level vision modalities, including semantic segmentation, depth,
surface normals, intrinsic colors, and optical flow. Experimental results on
the state-of-the-art methods for semantic segmentation and monocular depth
prediction, two important tasks in computer vision, show positive impact of
pre-training deep networks on our dataset for unstructured natural scenes. The
dataset and related materials will be available at
https://lhoangan.github.io/eden.
Related papers
- WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving [4.911903454560829]
WayveScenes101 is a dataset designed to help the community advance the state of the art in novel view synthesis.
The dataset comprises 101 driving scenes across a wide range of environmental conditions and driving scenarios.
arXiv Detail & Related papers (2024-07-11T08:29:45Z) - 360 in the Wild: Dataset for Depth Prediction and View Synthesis [66.58513725342125]
We introduce a large scale 360$circ$ videos dataset in the wild.
This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide.
Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map.
arXiv Detail & Related papers (2024-06-27T05:26:38Z) - Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation [6.635604919499181]
We introduce a new large aerial dataset for forest inspection.
It contains both real-world and virtual recordings of natural environments.
We develop a framework to assess the deforestation degree of an area.
arXiv Detail & Related papers (2024-03-11T11:26:44Z) - SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation
for Novel View Synthesis from a Single Image [60.52991173059486]
We introduce SAMPLING, a Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image.
Our method demonstrates considerable performance gains in large-scale unbounded outdoor scenes using a single image on the KITTI dataset.
arXiv Detail & Related papers (2023-09-12T15:33:09Z) - NPF-200: A Multi-Modal Eye Fixation Dataset and Method for
Non-Photorealistic Videos [51.409547544747284]
NPF-200 is the first large-scale multi-modal dataset of purely non-photorealistic videos with eye fixations.
We conduct a series of analyses to gain deeper insights into this task.
We propose a universal frequency-aware multi-modal non-photorealistic saliency detection model called NPSNet.
arXiv Detail & Related papers (2023-08-23T14:25:22Z) - Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene
Scale and Realism Tradeoffs for ObjectGoal Navigation [70.82403156865057]
We investigate the impact of synthetic 3D scene dataset scale and realism on the task of training embodied agents to find and navigate to objects.
Our experiments show that agents trained on our smaller-scale dataset can match or outperform agents trained on much larger datasets.
arXiv Detail & Related papers (2023-06-20T05:07:23Z) - VDD: Varied Drone Dataset for Semantic Segmentation [9.581655974280217]
We release a large-scale, densely labeled collection of 400 high-resolution images spanning 7 classes.
This dataset features various scenes in urban, industrial, rural, and natural areas, captured from different camera angles and under diverse lighting conditions.
We train seven state-of-the-art models on drone datasets as baselines.
arXiv Detail & Related papers (2023-05-23T02:16:14Z) - PanDepth: Joint Panoptic Segmentation and Depth Completion [19.642115764441016]
We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps.
Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame.
arXiv Detail & Related papers (2022-12-29T05:37:38Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort [117.41383937100751]
Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets.
We show how the GAN latent code can be decoded to produce a semantic segmentation of the image.
These generated datasets can then be used for training any computer vision architecture just as real datasets are.
arXiv Detail & Related papers (2021-04-13T20:08:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.