FIORD: A Fisheye Indoor-Outdoor Dataset with LIDAR Ground Truth for 3D Scene Reconstruction and Benchmarking
- URL: http://arxiv.org/abs/2504.01732v2
- Date: Wed, 09 Apr 2025 13:59:22 GMT
- Title: FIORD: A Fisheye Indoor-Outdoor Dataset with LIDAR Ground Truth for 3D Scene Reconstruction and Benchmarking
- Authors: Ulas Gunes, Matias Turkulainen, Xuqian Ren, Arno Solin, Juho Kannala, Esa Rahtu,
- Abstract summary: We introduce a fisheye image dataset tailored for scene reconstruction tasks.<n>Using dual 200-degree fisheye lenses, our dataset provides full 360-degree coverage of 5 indoor and 5 outdoor scenes.<n>Each scene has sparse SfM point clouds and precise LIDAR-derived dense point clouds that can be used as geometric ground-truth.
- Score: 29.634708606525727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of large-scale 3D scene reconstruction and novel view synthesis methods mostly rely on datasets comprising perspective images with narrow fields of view (FoV). While effective for small-scale scenes, these datasets require large image sets and extensive structure-from-motion (SfM) processing, limiting scalability. To address this, we introduce a fisheye image dataset tailored for scene reconstruction tasks. Using dual 200-degree fisheye lenses, our dataset provides full 360-degree coverage of 5 indoor and 5 outdoor scenes. Each scene has sparse SfM point clouds and precise LIDAR-derived dense point clouds that can be used as geometric ground-truth, enabling robust benchmarking under challenging conditions such as occlusions and reflections. While the baseline experiments focus on vanilla Gaussian Splatting and NeRF based Nerfacto methods, the dataset supports diverse approaches for scene reconstruction, novel view synthesis, and image-based rendering.
Related papers
- GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring [50.72230109855628]
We propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach.
We first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories.
By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur.
arXiv Detail & Related papers (2024-10-31T06:17:16Z) - 360 in the Wild: Dataset for Depth Prediction and View Synthesis [66.58513725342125]
We introduce a large scale 360$circ$ videos dataset in the wild.
This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide.
Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map.
arXiv Detail & Related papers (2024-06-27T05:26:38Z) - Shape2.5D: A Dataset of Texture-less Surfaces for Depth and Normals Estimation [12.757150641117077]
"Shape2.5D" is a novel, large-scale dataset designed to address this gap.
The proposed dataset includes synthetic images rendered with 3D modeling software.
It also includes a real-world subset comprising 4,672 frames captured with a depth camera.
arXiv Detail & Related papers (2024-06-22T12:24:49Z) - MegaScenes: Scene-Level View Synthesis at Scale [69.21293001231993]
Scene-level novel view synthesis (NVS) is fundamental to many vision and graphics applications.
We create a large-scale scene-level dataset from Internet photo collections, called MegaScenes, which contains over 100K structure from motion (SfM) reconstructions from around the world.
We analyze failure cases of state-of-the-art NVS methods and significantly improve generation consistency.
arXiv Detail & Related papers (2024-06-17T17:55:55Z) - MSI-NeRF: Linking Omni-Depth with View Synthesis through Multi-Sphere Image aided Generalizable Neural Radiance Field [1.3162012586770577]
We introduce MSI-NeRF, which combines deep learning omnidirectional depth estimation and novel view synthesis.
We construct a multi-sphere image as a cost volume through feature extraction and warping of the input images.
Our network has the generalization ability to reconstruct unknown scenes efficiently using only four images.
arXiv Detail & Related papers (2024-03-16T07:26:50Z) - Den-SOFT: Dense Space-Oriented Light Field DataseT for 6-DOF Immersive Experience [28.651514326042648]
We have built a custom mobile multi-camera large-space dense light field capture system.
Our aim is to contribute to the development of popular 3D scene reconstruction algorithms.
The collected dataset is much denser than existing datasets.
arXiv Detail & Related papers (2024-03-15T02:39:44Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.