論文の概要: Neural Spatio-Temporal Point Processes
- arxiv url: http://arxiv.org/abs/2011.04583v3
- Date: Thu, 18 Mar 2021 00:00:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 01:44:00.036885
- Title: Neural Spatio-Temporal Point Processes
- Title(参考訳): 神経時空間点過程
- Authors: Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
- Abstract要約: 本稿では,ニューラルODEを計算手法として活用した,点自明なプロセスのための新しいパラメータ化のクラスを提案する。
我々は,地震学,疫学,都市移動性,神経科学など,さまざまな文脈のデータセットを用いて,我々のモデルを検証した。
- 参考スコア(独自算出の注目度): 31.474420819149724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new class of parameterizations for spatio-temporal point
processes which leverage Neural ODEs as a computational method and enable
flexible, high-fidelity models of discrete events that are localized in
continuous time and space. Central to our approach is a combination of
continuous-time neural networks with two novel neural architectures, i.e., Jump
and Attentive Continuous-time Normalizing Flows. This approach allows us to
learn complex distributions for both the spatial and temporal domain and to
condition non-trivially on the observed event history. We validate our models
on data sets from a wide variety of contexts such as seismology, epidemiology,
urban mobility, and neuroscience.
- Abstract(参考訳): 本稿では、ニューラルODEを計算手法として活用し、連続時間と空間で局所化される離散事象のフレキシブルで高忠実なモデルを実現する、時空間プロセスのための新しいパラメータ化クラスを提案する。
私たちのアプローチの中心は、連続時間ニューラルネットワークと、2つの新しいニューラルネットワーク、すなわちジャンプと注意的連続時間正規化フローの組み合わせです。
このアプローチにより、空間領域と時間領域の両方の複雑な分布を学習し、観測された事象履歴に自明な条件を付けることができる。
我々は,地震学,疫学,都市移動性,神経科学など,さまざまな文脈のデータセットを用いて,我々のモデルを検証した。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
現在利用可能なニューラルネットワークベースのモデリングアプローチは、時間と空間でランダムに収集されたデータに直面したときに不足する。
そこで我々は,このようなランダムなサンプルデータを効果的に処理する新しい手法を開発した。
我々のモデルは、システムの力学と将来の観測のタイミングと位置の両方を予測するために、償却変分推論、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現といった技術を統合する。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning [14.353798949041698]
本稿では,空間時間グラフ学習のための適応型フェデレーション関連フレームワークであるFedRelを提案する。
フレームワークのコアとなるDynamic Inter-Intra Graph (DIIG)モジュールは、これらの機能を使用して空間時間グラフを生成することができる。
局所的なデータプライバシーを維持しながらモデルの一般化能力と性能を向上させるため、関連性駆動型フェデレーション学習モジュールを設計する。
論文 参考訳(メタデータ) (2022-06-07T16:12:17Z) - Neural Point Process for Learning Spatiotemporal Event Dynamics [21.43984242938217]
本稿では,時間的点過程を統合するディープ・ダイナミクス・モデルを提案する。
提案手法は柔軟で効率的で,不規則にサンプリングされた事象を時間と空間で正確に予測することができる。
実世界のベンチマークでは、我々のモデルは最先端のベースラインよりも優れた性能を示している。
論文 参考訳(メタデータ) (2021-12-12T23:17:33Z) - Neural Ordinary Differential Equation Model for Evolutionary Subspace
Clustering and Its Applications [36.700813256689656]
この制限を克服するために,進化的サブスペースクラスタリングのためのニューラルODEモデルを提案する。
本手法は,進化的サブスペースクラスタリングタスクにおいて,任意のステップでデータを補間するだけでなく,他の最先端手法よりも高い精度を達成できることを実証する。
論文 参考訳(メタデータ) (2021-07-22T07:02:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。