論文の概要: Privacy-Preserving XGBoost Inference
- arxiv url: http://arxiv.org/abs/2011.04789v4
- Date: Tue, 24 Nov 2020 18:07:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 02:31:08.486738
- Title: Privacy-Preserving XGBoost Inference
- Title(参考訳): プライバシー保護XGBoost推論
- Authors: Xianrui Meng, Joan Feigenbaum
- Abstract要約: 採用の大きな障壁は、予測クエリの繊細な性質である。
プライバシ保護機械学習(PPML)の中心的な目標は、暗号化されたクエリをリモートMLサービスに送信できるようにすることだ。
プライバシを保存するXGBoost予測アルゴリズムを提案し,AWS SageMaker上で実証的に評価を行った。
- 参考スコア(独自算出の注目度): 0.6345523830122165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although machine learning (ML) is widely used for predictive tasks, there are
important scenarios in which ML cannot be used or at least cannot achieve its
full potential. A major barrier to adoption is the sensitive nature of
predictive queries. Individual users may lack sufficiently rich datasets to
train accurate models locally but also be unwilling to send sensitive queries
to commercial services that vend such models. One central goal of
privacy-preserving machine learning (PPML) is to enable users to submit
encrypted queries to a remote ML service, receive encrypted results, and
decrypt them locally. We aim at developing practical solutions for real-world
privacy-preserving ML inference problems. In this paper, we propose a
privacy-preserving XGBoost prediction algorithm, which we have implemented and
evaluated empirically on AWS SageMaker. Experimental results indicate that our
algorithm is efficient enough to be used in real ML production environments.
- Abstract(参考訳): 機械学習(ML)は予測タスクに広く利用されているが、MLを使用できない、あるいは少なくともその潜在能力を完全に達成できない重要なシナリオがある。
採用の大きな障壁は、予測クエリのセンシティブな性質である。
個々のユーザには、正確なモデルをローカルにトレーニングする十分な豊富なデータセットが不足するかも知れませんが、そのようなモデルをサポートする商用サービスにセンシティブなクエリを送信したくない場合もあります。
プライバシー保護機械学習(PPML)の中心的な目標は、暗号化されたクエリをリモートMLサービスに送信し、暗号化された結果を受け取り、ローカルに復号できるようにすることである。
我々は,現実のプライバシ保護型ML推論問題に対する実用的なソリューションの開発を目指している。
本稿では,AWS SageMaker上で実証的に評価したプライバシー保護型XGBoost予測アルゴリズムを提案する。
実験結果から,本アルゴリズムは実運用環境において十分に有効であることがわかった。
関連論文リスト
- SVIP: Towards Verifiable Inference of Open-source Large Language Models [33.910670775972335]
オープンソースのLarge Language Models (LLMs)は、最近、自然言語の理解と生成において顕著な能力を示し、様々な領域で広く採用されている。
モデルのサイズが大きくなることで、個々のユーザにとってローカルデプロイメントは現実的ではなく、ブラックボックスAPIを通じて推論を行うコンピューティングサービスプロバイダに頼らざるを得なくなる。
この依存は新たなリスクをもたらす: コンピューティングプロバイダは、要求されたLLMをユーザからの同意なく、より小さく、能力の低いモデルにステルス的に置き換えて、コスト削減の恩恵を受けながら、劣ったアウトプットを配信する。
論文 参考訳(メタデータ) (2024-10-29T17:52:45Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Wildest Dreams: Reproducible Research in Privacy-preserving Neural
Network Training [2.853180143237022]
この作業は、ユーザデータのプライバシを維持することが最も重要であるMLモデルのトレーニングフェーズに重点を置いている。
我々は、現在のアプローチの理解を容易にする、しっかりとした理論的背景を提供する。
我々は,いくつかの論文の成果を再現し,その分野における既存の研究がオープンサイエンスを支援するレベルについて検討する。
論文 参考訳(メタデータ) (2024-03-06T10:25:36Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
プライバシ保存機械学習(PPML)メソッドは、機械学習モデルのプライバシとセキュリティを保護するために導入された。
現代の暗号方式であるHybrid Homomorphic Encryption (HHE)が最近登場した。
心電図データに基づく心疾患の分類のためのHHEベースのPPMLアプリケーションの開発と評価を行った。
論文 参考訳(メタデータ) (2024-01-26T13:12:52Z) - HE-MAN -- Homomorphically Encrypted MAchine learning with oNnx models [0.23624125155742057]
ホモモルフィック暗号化(FHE)は、プライバシを諦めることなくMLサービスを使用する個人を可能にする、有望なテクニックである。
我々は、ONNXモデルと同型暗号化データとの推論をプライバシー保護するためのオープンソースの機械学習ツールセットであるHE-MANを紹介する。
HE-MANは以前の作業と比較して、ONNXフォーマットの幅広いMLモデルをサポートしているが、精度を犠牲にしない。
論文 参考訳(メタデータ) (2023-02-16T12:37:14Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。