論文の概要: Multi-pooled Inception features for no-reference image quality
assessment
- arxiv url: http://arxiv.org/abs/2011.05139v1
- Date: Tue, 10 Nov 2020 15:09:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 07:51:14.438294
- Title: Multi-pooled Inception features for no-reference image quality
assessment
- Title(参考訳): 非参照画像品質評価のためのマルチプールインセプション機能
- Authors: Domonkos Varga
- Abstract要約: 畳み込みニューラルネットワーク(CNN)を用いた画像品質評価の新しい手法を提案する。
従来の手法とは対照的に、入力画像からパッチを取らない。代わりに、入力画像は全体として処理され、事前訓練されたCNN本体を通して実行され、解像度に依存しない多段階の深い特徴を抽出する。
我々は、MultiGAP-NRIQAと呼ばれるベストな提案が、3つのベンチマークIQAデータベースに対して最先端の結果を提供することができることを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image quality assessment (IQA) is an important element of a broad spectrum of
applications ranging from automatic video streaming to display technology.
Furthermore, the measurement of image quality requires a balanced investigation
of image content and features. Our proposed approach extracts visual features
by attaching global average pooling (GAP) layers to multiple Inception modules
of on an ImageNet database pretrained convolutional neural network (CNN). In
contrast to previous methods, we do not take patches from the input image.
Instead, the input image is treated as a whole and is run through a pretrained
CNN body to extract resolution-independent, multi-level deep features. As a
consequence, our method can be easily generalized to any input image size and
pretrained CNNs. Thus, we present a detailed parameter study with respect to
the CNN base architectures and the effectiveness of different deep features. We
demonstrate that our best proposal - called MultiGAP-NRIQA - is able to provide
state-of-the-art results on three benchmark IQA databases. Furthermore, these
results were also confirmed in a cross database test using the LIVE In the Wild
Image Quality Challenge database.
- Abstract(参考訳): 画像品質評価(IQA)は、自動ビデオストリーミングからディスプレイ技術まで幅広い分野のアプリケーションにおいて重要な要素である。
さらに、画質の測定には、画像内容と特徴のバランスのとれた調査が必要となる。
提案手法は,imagenet database pretrained convolutional neural network (cnn) 上の複数のインセプションモジュールにgap(global average pooling)層をアタッチすることで視覚特徴を抽出する。
従来の手法とは対照的に、入力画像からパッチを取らない。
代わりに、入力画像全体が処理され、事前訓練されたcnn本体を通り抜けて、解像度非依存、多レベル深層特徴を抽出する。
その結果、任意の入力画像サイズと事前学習されたcnnに容易に一般化できる。
そこで本研究では,CNNベースアーキテクチャに関する詳細なパラメータスタディと,異なる深部特徴の有効性について述べる。
当社のベストプロポーザルであるmultigap-nriqaは,3つのベンチマーク iqa データベースで最先端の結果を提供することができます。
さらに、これらの結果は、LIVE In the Wild Image Quality Challengeデータベースを用いたクロスデータベーステストでも確認された。
関連論文リスト
- Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network [20.835800149919145]
画像品質評価(IQA)アルゴリズムは、画像品質に対する人間の認識を定量化することを目的としている。
GAN(Generative Adversarial Network)によって生成された歪み画像を、一見現実的なテクスチャで評価する際の性能低下がある。
本稿では,AHIQ(Hybrid Image Quality Assessment Network)を提案する。
論文 参考訳(メタデータ) (2022-04-22T03:59:18Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
現在のIQA法は畳み込みニューラルネットワーク(CNN)に基づいている
マルチスケール画像品質変換器(MUSIQ)を設計し,サイズやアスペクト比の異なるネイティブ解像度画像を処理する。
提案手法は,マルチスケールの画像表現により,様々な粒度で画像品質を捉えることができる。
論文 参考訳(メタデータ) (2021-08-12T23:36:22Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Combining pretrained CNN feature extractors to enhance clustering of
complex natural images [27.784346095205358]
本稿では,画像クラスタリング(IC)における事前学習CNN機能の利用に関する知見を提供することを目的とする。
そこで本研究では,IC問題をマルチビュークラスタリング(MVC)問題として再構成することを提案する。
次に、MVC問題を効果的に解くためにエンドツーエンドに訓練されたマルチインプットニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-01-07T21:23:04Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
既存のディープニューラルネットワーク(DNN)はIQA問題に対処する上で大きな効果を示している。
画像品質予測のための階層的マルチスケール特徴を持つDNNを構築するためにピラミッド特徴学習を提案する。
提案するネットワークは、エンド・ツー・エンドの監視方法に最適化されている。
論文 参考訳(メタデータ) (2020-12-01T23:39:01Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。