Biomedical Information Extraction for Disease Gene Prioritization
- URL: http://arxiv.org/abs/2011.05188v2
- Date: Thu, 12 Nov 2020 16:56:12 GMT
- Title: Biomedical Information Extraction for Disease Gene Prioritization
- Authors: Jupinder Parmar, William Koehler, Martin Bringmann, Katharina Sophia
Volz, Berk Kapicioglu
- Abstract summary: We introduce a biomedical information extraction pipeline that extracts biological relationships from text.
We apply it to tens of millions of PubMed abstracts to extract protein-protein interactions (PPIs) and augment these extractions to a biomedical knowledge graph.
We show that, despite already containing PPIs from an established structured source, augmenting our own IE-based extractions to the graph allows us to predict novel disease-gene associations with a 20% relative increase in hit@30.
- Score: 0.34998703934432673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a biomedical information extraction (IE) pipeline that extracts
biological relationships from text and demonstrate that its components, such as
named entity recognition (NER) and relation extraction (RE), outperform
state-of-the-art in BioNLP. We apply it to tens of millions of PubMed abstracts
to extract protein-protein interactions (PPIs) and augment these extractions to
a biomedical knowledge graph that already contains PPIs extracted from STRING,
the leading structured PPI database. We show that, despite already containing
PPIs from an established structured source, augmenting our own IE-based
extractions to the graph allows us to predict novel disease-gene associations
with a 20% relative increase in hit@30, an important step towards developing
drug targets for uncured diseases.
Related papers
- Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction [2.524192238862961]
Our approach integrates the ChemProt and DrugProt datasets using a novel merging strategy.
The study highlights the potential of automated information extraction in biomedical research and clinical practice.
arXiv Detail & Related papers (2024-05-28T21:34:01Z) - Extracting Protein-Protein Interactions (PPIs) from Biomedical
Literature using Attention-based Relational Context Information [5.456047952635665]
This work presents a unified, multi-source PPI corpora with vetted interaction definitions augmented by binary interaction type labels.
A Transformer-based deep learning method exploits entities' relational context information for relation representation to improve relation classification performance.
The model's performance is evaluated on four widely studied biomedical relation extraction datasets.
arXiv Detail & Related papers (2024-03-08T01:43:21Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
This paper presents SimpleGermKG, an automatic knowledge graph construction approach that connects germline genes and diseases.
For the extraction of genes and diseases, we employ BioBERT, a pre-trained BERT model on biomedical corpora.
For semantic relationships between articles, genes, and diseases, we implemented a part-whole relation approach.
Our knowledge graph contains 297 genes, 130 diseases, and 46,747 triples.
arXiv Detail & Related papers (2023-09-11T18:05:12Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Assigning function to protein-protein interactions: a weakly supervised
BioBERT based approach using PubMed abstracts [2.208694022993555]
Protein-protein interactions (PPI) are critical to the function of proteins in both normal and diseased cells.
Only a small percentage of PPIs captured in protein interaction databases have annotations of function available.
Here, we aim to label the function type of PPIs by extracting relationships described in PubMed abstracts.
arXiv Detail & Related papers (2020-08-20T01:42:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.