BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction
- URL: http://arxiv.org/abs/2405.18605v1
- Date: Tue, 28 May 2024 21:34:01 GMT
- Title: BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction
- Authors: Bridget T. McInnes, Jiawei Tang, Darshini Mahendran, Mai H. Nguyen,
- Abstract summary: Our approach integrates the ChemProt and DrugProt datasets using a novel merging strategy.
The study highlights the potential of automated information extraction in biomedical research and clinical practice.
- Score: 2.524192238862961
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a methodology for enhancing relation extraction from biomedical texts, focusing specifically on chemical-gene interactions. Leveraging the BioBERT model and a multi-layer fully connected network architecture, our approach integrates the ChemProt and DrugProt datasets using a novel merging strategy. Through extensive experimentation, we demonstrate significant performance improvements, particularly in CPR groups shared between the datasets. The findings underscore the importance of dataset merging in augmenting sample counts and improving model accuracy. Moreover, the study highlights the potential of automated information extraction in biomedical research and clinical practice.
Related papers
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - BioREx: Improving Biomedical Relation Extraction by Leveraging
Heterogeneous Datasets [7.7587371896752595]
Biomedical relation extraction (RE) is a central task in biomedical natural language processing (NLP) research.
We present a novel framework for systematically addressing the data heterogeneity of individual datasets and combining them into a large dataset.
Our evaluation shows that BioREx achieves significantly higher performance than the benchmark system trained on the individual dataset.
arXiv Detail & Related papers (2023-06-19T22:48:18Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for
prior-informed assessment of muscle function and pathology [48.54269377408277]
We introduce the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI), that integrates hypothesis-driven priors in a data-driven Deep Learning approach.
SEMPAI performs joint learning of several tasks to enable prediction for small datasets.
SEMPAI outperforms state-of-the-art biomarkers in six of seven predictive tasks, including those with scarce data.
arXiv Detail & Related papers (2022-10-28T17:03:04Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
We present BioRED, a first-of-its-kind biomedical RE corpus with multiple entity types and relation pairs.
We label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information.
Our results show that while existing approaches can reach high performance on the NER task, there is much room for improvement for the RE task.
arXiv Detail & Related papers (2022-04-08T19:23:49Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Graph Representation Learning on Tissue-Specific Multi-Omics [0.0]
We leverage a graph embedding model (i.e VGAE) to perform link prediction on tissue-specific Gene-Gene Interaction (GGI) networks.
We prove that the combination of multiple biological modalities (i.e multi-omics) leads to powerful embeddings and better link prediction performances.
arXiv Detail & Related papers (2021-07-25T17:38:45Z) - Investigation of BERT Model on Biomedical Relation Extraction Based on
Revised Fine-tuning Mechanism [2.8881198461098894]
We will investigate the method of utilizing the entire layer in the fine-tuning process of BERT model.
In addition, further analysis indicates that the key knowledge about the relations can be learned from the last layer of BERT model.
arXiv Detail & Related papers (2020-11-01T01:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.