Deep Neural Mobile Networking
- URL: http://arxiv.org/abs/2011.05267v1
- Date: Fri, 23 Oct 2020 09:23:36 GMT
- Title: Deep Neural Mobile Networking
- Authors: Chaoyun Zhang
- Abstract summary: This thesis attacks important problems in the mobile networking area by harnessing recent advances in deep neural networks.
Deep learning based solutions can automatically extract features from raw data, without human expertise.
- Score: 2.566129836901404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The next generation of mobile networks is set to become increasingly complex,
as these struggle to accommodate tremendous data traffic demands generated by
ever-more connected devices that have diverse performance requirements in terms
of throughput, latency, and reliability. This makes monitoring and managing the
multitude of network elements intractable with existing tools and impractical
for traditional machine learning algorithms that rely on hand-crafted feature
engineering. In this context, embedding machine intelligence into mobile
networks becomes necessary, as this enables systematic mining of valuable
information from mobile big data and automatically uncovering correlations that
would otherwise have been too difficult to extract by human experts. In
particular, deep learning based solutions can automatically extract features
from raw data, without human expertise. The performance of artificial
intelligence (AI) has achieved in other domains draws unprecedented interest
from both academia and industry in employing deep learning approaches to
address technical challenges in mobile networks. This thesis attacks important
problems in the mobile networking area from various perspectives by harnessing
recent advances in deep neural networks.
Related papers
- Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - A review of Federated Learning in Intrusion Detection Systems for IoT [0.15469452301122172]
Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment.
Deep learning technologies opened the door to build more complex and effective threat detection models.
Current approaches rely on powerful centralized servers that receive data from all their parties.
This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection.
arXiv Detail & Related papers (2022-04-26T17:00:07Z) - Machine Learning Empowered Intelligent Data Center Networking: A Survey [35.55535885962517]
This paper comprehensively investigates the application of machine learning to data center networking.
It covers flow prediction, flow classification, load balancing, resource management, routing optimization, and congestion control.
We design a quality assessment criteria called REBEL-3S to impartially measure the strengths and weaknesses of these research works.
arXiv Detail & Related papers (2022-02-28T05:27:22Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings.
With the deployment of massive IIoT devices, it is difficult for the wireless network to support the ubiquitous connections with diverse quality-of-service (QoS) requirements.
We first summarize the requirements of the typical massive non-critical and critical IIoT use cases. We then identify unique characteristics in the massive IIoT scenario, and the corresponding machine learning solutions with its limitations and potential research directions.
arXiv Detail & Related papers (2021-03-10T20:10:53Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Trends and Advancements in Deep Neural Network Communication [20.20847220414994]
This paper gives an overview over the recent advancements and challenges in this new field of research at the intersection of machine learning and communications.
New approaches, which bring the "intelligence to the data" have many advantages over traditional cloud solutions.
arXiv Detail & Related papers (2020-03-06T17:34:15Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.