Trends and Advancements in Deep Neural Network Communication
- URL: http://arxiv.org/abs/2003.03320v1
- Date: Fri, 6 Mar 2020 17:34:15 GMT
- Title: Trends and Advancements in Deep Neural Network Communication
- Authors: Felix Sattler, Thomas Wiegand, Wojciech Samek
- Abstract summary: This paper gives an overview over the recent advancements and challenges in this new field of research at the intersection of machine learning and communications.
New approaches, which bring the "intelligence to the data" have many advantages over traditional cloud solutions.
- Score: 20.20847220414994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to their great performance and scalability properties neural networks
have become ubiquitous building blocks of many applications. With the rise of
mobile and IoT, these models now are also being increasingly applied in
distributed settings, where the owners of the data are separated by limited
communication channels and privacy constraints. To address the challenges of
these distributed environments, a wide range of training and evaluation schemes
have been developed, which require the communication of neural network
parametrizations. These novel approaches, which bring the "intelligence to the
data" have many advantages over traditional cloud solutions such as
privacy-preservation, increased security and device autonomy, communication
efficiency and high training speed. This paper gives an overview over the
recent advancements and challenges in this new field of research at the
intersection of machine learning and communications.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - A review of Federated Learning in Intrusion Detection Systems for IoT [0.15469452301122172]
Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment.
Deep learning technologies opened the door to build more complex and effective threat detection models.
Current approaches rely on powerful centralized servers that receive data from all their parties.
This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection.
arXiv Detail & Related papers (2022-04-26T17:00:07Z) - Privacy-Preserving Serverless Edge Learning with Decentralized Small
Data [13.254530176359182]
Distributed training strategies have recently become a promising approach to ensure data privacy when training deep models.
This paper extends conventional serverless platforms with serverless edge learning architectures and provides an efficient distributed training framework from the networking perspective.
arXiv Detail & Related papers (2021-11-29T21:04:49Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Spiking Neural Networks -- Part III: Neuromorphic Communications [38.518936229794214]
The presence of more and more wirelessly connected devices is driving efforts to export advances in machine learning.
Implementing machine learning models for learning and inference on battery-powered devices that are connected via bandwidth-constrained channels remains challenging.
This paper explores two ways in which Spiking Neural Networks (SNNs) can help address these open problems.
arXiv Detail & Related papers (2020-10-27T11:52:35Z) - Deep Neural Mobile Networking [2.566129836901404]
This thesis attacks important problems in the mobile networking area by harnessing recent advances in deep neural networks.
Deep learning based solutions can automatically extract features from raw data, without human expertise.
arXiv Detail & Related papers (2020-10-23T09:23:36Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.