Learning ODE Models with Qualitative Structure Using Gaussian Processes
- URL: http://arxiv.org/abs/2011.05364v2
- Date: Sat, 27 Mar 2021 17:28:44 GMT
- Title: Learning ODE Models with Qualitative Structure Using Gaussian Processes
- Authors: Steffen Ridderbusch, Christian Offen, Sina Ober-Bl\"obaum, Paul
Goulart
- Abstract summary: In many contexts explicit data collection is expensive and learning algorithms must be data-efficient to be feasible.
We propose an approach to learning a vector field of differential equations using sparse Gaussian Processes.
We show that this combination improves extrapolation performance and long-term behaviour significantly, while also reducing the computational cost.
- Score: 0.6882042556551611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in learning techniques have enabled the modelling of
dynamical systems for scientific and engineering applications directly from
data. However, in many contexts explicit data collection is expensive and
learning algorithms must be data-efficient to be feasible. This suggests using
additional qualitative information about the system, which is often available
from prior experiments or domain knowledge. We propose an approach to learning
a vector field of differential equations using sparse Gaussian Processes that
allows us to combine data and additional structural information, like Lie Group
symmetries and fixed points. We show that this combination improves
extrapolation performance and long-term behaviour significantly, while also
reducing the computational cost.
Related papers
- Tensor Decompositions Meet Control Theory: Learning General Mixtures of
Linear Dynamical Systems [19.47235707806519]
We give a new approach to learning mixtures of linear dynamical systems based on tensor decompositions.
Our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories.
arXiv Detail & Related papers (2023-07-13T03:00:01Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Transfer-Learning Across Datasets with Different Input Dimensions: An
Algorithm and Analysis for the Linear Regression Case [7.674023644408741]
We propose a transfer learning algorithm that combines new and historical data with different input dimensions.
Our approach achieves state-of-the-art performance on 9 real-life datasets.
arXiv Detail & Related papers (2022-02-10T14:57:15Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements.
In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method.
arXiv Detail & Related papers (2021-09-23T15:43:45Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.