Advancing Reacting Flow Simulations with Data-Driven Models
- URL: http://arxiv.org/abs/2209.02051v1
- Date: Mon, 5 Sep 2022 16:48:34 GMT
- Title: Advancing Reacting Flow Simulations with Data-Driven Models
- Authors: Kamila Zdyba{\l}, Giuseppe D'Alessio, Gianmarco Aversano, Mohammad
Rafi Malik, Axel Coussement, James C. Sutherland, Alessandro Parente
- Abstract summary: Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
- Score: 50.9598607067535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of machine learning algorithms to predict behaviors of complex
systems is booming. However, the key to an effective use of machine learning
tools in multi-physics problems, including combustion, is to couple them to
physical and computer models. The performance of these tools is enhanced if all
the prior knowledge and the physical constraints are embodied. In other words,
the scientific method must be adapted to bring machine learning into the
picture, and make the best use of the massive amount of data we have produced,
thanks to the advances in numerical computing. The present chapter reviews some
of the open opportunities for the application of data-driven reduced-order
modeling of combustion systems. Examples of feature extraction in turbulent
combustion data, empirical low-dimensional manifold (ELDM) identification,
classification, regression, and reduced-order modeling are provided.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Obtaining physical layer data of latest generation networks for investigating adversary attacks [0.0]
Machine learning can be used to optimize the functions of latest generation data networks such as 5G and 6G.
adversarial measures that manipulate the behaviour of intelligent machine learning models are becoming a major concern.
A simulation model is proposed that works in conjunction with machine learning applications.
arXiv Detail & Related papers (2024-05-02T06:03:27Z) - A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
We present a comparative study of three different methods to predict the free energy change of systems with interacting defects.
Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset.
This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems.
arXiv Detail & Related papers (2024-03-20T02:15:48Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Meta-Learning for Airflow Simulations with Graph Neural Networks [3.52359746858894]
We present a meta-learning approach to enhance the performance of learned models on out-of-distribution (OoD) samples.
Specifically, we set the airflow simulation in CFD over various airfoils as a meta-learning problem, where each set of examples defined on a single airfoil shape is treated as a separate task.
We experimentally demonstrate the efficiency of the proposed approach for improving the OoD generalization performance of learned models.
arXiv Detail & Related papers (2023-06-18T19:25:13Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.