Glioma Classification Using Multimodal Radiology and Histology Data
- URL: http://arxiv.org/abs/2011.05410v1
- Date: Tue, 10 Nov 2020 21:38:26 GMT
- Title: Glioma Classification Using Multimodal Radiology and Histology Data
- Authors: Azam Hamidinekoo, Tomasz Pieciak, Maryam Afzali, Otar Akanyeti, Yinyin
Yuan
- Abstract summary: We propose a pipeline for automatic classification of gliomas into three sub-types: oligodendroglioma, astrocytoma, and glioblastoma.
The classification algorithm was evaluated using the data set provided in the CPM-RadPath 2020 challenge.
- Score: 0.41883694872353855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gliomas are brain tumours with a high mortality rate. There are various
grades and sub-types of this tumour, and the treatment procedure varies
accordingly. Clinicians and oncologists diagnose and categorise these tumours
based on visual inspection of radiology and histology data. However, this
process can be time-consuming and subjective. The computer-assisted methods can
help clinicians to make better and faster decisions. In this paper, we propose
a pipeline for automatic classification of gliomas into three sub-types:
oligodendroglioma, astrocytoma, and glioblastoma, using both radiology and
histopathology images. The proposed approach implements distinct classification
models for radiographic and histologic modalities and combines them through an
ensemble method. The classification algorithm initially carries out tile-level
(for histology) and slice-level (for radiology) classification via a deep
learning method, then tile/slice-level latent features are combined for a
whole-slide and whole-volume sub-type prediction. The classification algorithm
was evaluated using the data set provided in the CPM-RadPath 2020 challenge.
The proposed pipeline achieved the F1-Score of 0.886, Cohen's Kappa score of
0.811 and Balance accuracy of 0.860. The ability of the proposed model for
end-to-end learning of diverse features enables it to give a comparable
prediction of glioma tumour sub-types.
Related papers
- Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem.
We develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
arXiv Detail & Related papers (2024-07-05T23:14:46Z) - A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods [6.318593483920089]
Acute lymphoblastic leukemia (ALL) severity is determined by the presence and ratios of blast cells.
In this paper, a ResNet-based feature extractor is utilized to detect ALL, along with a variety of feature selectors and classifiers.
This technique got an impressive 90.71% accuracy and 95.76% sensitivity for the relevant classifications, and its metrics on this dataset outperformed others.
arXiv Detail & Related papers (2024-06-02T13:25:44Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors.
The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue.
arXiv Detail & Related papers (2022-12-30T12:27:27Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - An Interpretable Algorithm for Uveal Melanoma Subtyping from Whole Slide
Cytology Images [3.33281597371121]
We describe an automated yet interpretable system for uveal melanoma subtyping with digital images from fine needle aspiration biopsies.
Our method embeds every automatically segmented cell of a candidate image as a point in a 2D manifold defined by many representative slides.
A rule-based slide-level classification algorithm is trained on the partitions of the circularly distorted 2D manifold.
arXiv Detail & Related papers (2021-08-13T13:55:08Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
We propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method.
It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant.
Our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
arXiv Detail & Related papers (2021-01-01T11:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.