Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling
- URL: http://arxiv.org/abs/2407.04888v1
- Date: Fri, 5 Jul 2024 23:14:46 GMT
- Title: Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling
- Authors: Mahdi Ait Lhaj Loutfi, Teodora Boblea Podasca, Alex Zwanenburg, Taman Upadhaya, Jorge Barrios, David R. Raleigh, William C. Chen, Dante P. I. Capaldi, Hong Zheng, Olivier Gevaert, Jing Wu, Alvin C. Silva, Paul J. Zhang, Harrison X. Bai, Jan Seuntjens, Steffen Löck, Patrick O. Richard, Olivier Morin, Caroline Reinhold, Martin Lepage, Martin Vallières,
- Abstract summary: The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem.
We develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
- Score: 4.1032659987778315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem. Purpose: Develop a methodology and tools to identify and explain the smallest set of predictive radiomic features. Materials and Methods: 89,714 radiomic features were extracted from five cancer datasets: low-grade glioma, meningioma, non-small cell lung cancer (NSCLC), and two renal cell carcinoma cohorts (n=2104). Features were categorized by computational complexity into morphological, intensity, texture, linear filters, and nonlinear filters. Models were trained and evaluated on each complexity level using the area under the curve (AUC). The most informative features were identified, and their importance was explained. The optimal complexity level and associated most informative features were identified using systematic statistical significance analyses and a false discovery avoidance procedure, respectively. Their predictive importance was explained using a novel tree-based method. Results: MEDimage, a new open-source tool, was developed to facilitate radiomic studies. Morphological features were optimal for MRI-based meningioma (AUC: 0.65) and low-grade glioma (AUC: 0.68). Intensity features were optimal for CECT-based renal cell carcinoma (AUC: 0.82) and CT-based NSCLC (AUC: 0.76). Texture features were optimal for MRI-based renal cell carcinoma (AUC: 0.72). Tuning the Hounsfield unit range improved results for CECT-based renal cell carcinoma (AUC: 0.86). Conclusion: Our proposed methodology and software can estimate the optimal radiomics complexity level for specific medical outcomes, potentially simplifying the use of radiomics in predictive modeling across various contexts.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - BrainMetDetect: Predicting Primary Tumor from Brain Metastasis MRI Data Using Radiomic Features and Machine Learning Algorithms [0.0]
Brain metastases (BMs) are common in cancer patients and determining the primary tumor site is crucial for effective treatment.
This study aims to predict the primary tumor site from BM MRI data using radiomic features and advanced machine learning algorithms.
arXiv Detail & Related papers (2024-07-06T11:34:00Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients.
Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis.
We developed a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage.
arXiv Detail & Related papers (2023-09-13T16:59:50Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-08-29T17:44:28Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - Prognostic Power of Texture Based Morphological Operations in a
Radiomics Study for Lung Cancer [0.0]
The study is conducted on an open database of patients suffering from Nonsmall Cells Lung Carcinoma (NSCLC)
The tumor features are extracted from the CT images and analyzed via PCA and a Kaplan-Meier survival analysis in order to select the most relevant ones.
Among the 1,589 studied features, 32 are found relevant to predict patient survival: 27 classical radiomics features and five MM features.
arXiv Detail & Related papers (2020-12-23T13:38:19Z) - Glioma Classification Using Multimodal Radiology and Histology Data [0.41883694872353855]
We propose a pipeline for automatic classification of gliomas into three sub-types: oligodendroglioma, astrocytoma, and glioblastoma.
The classification algorithm was evaluated using the data set provided in the CPM-RadPath 2020 challenge.
arXiv Detail & Related papers (2020-11-10T21:38:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.