論文の概要: Unsupervised Learning of Dense Visual Representations
- arxiv url: http://arxiv.org/abs/2011.05499v2
- Date: Mon, 7 Dec 2020 20:16:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 00:17:43.257820
- Title: Unsupervised Learning of Dense Visual Representations
- Title(参考訳): 難解な視覚表現の教師なし学習
- Authors: Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmalek, Florian Golemo,
Aaron Courville
- Abstract要約: 本研究では,高密度表現の教師なし学習のためのビュー・アグノスティック・Dense Representation (VADeR)を提案する。
VADeRは、異なる視聴条件に対して局所的な特徴を一定に保ち続けるように強制することで、ピクセルワイズ表現を学習する。
提案手法は、複数の密集予測タスクにおいて、ImageNetの教師付き事前学習よりも優れる。
- 参考スコア(独自算出の注目度): 14.329781842154281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive self-supervised learning has emerged as a promising approach to
unsupervised visual representation learning. In general, these methods learn
global (image-level) representations that are invariant to different views
(i.e., compositions of data augmentation) of the same image. However, many
visual understanding tasks require dense (pixel-level) representations. In this
paper, we propose View-Agnostic Dense Representation (VADeR) for unsupervised
learning of dense representations. VADeR learns pixelwise representations by
forcing local features to remain constant over different viewing conditions.
Specifically, this is achieved through pixel-level contrastive learning:
matching features (that is, features that describes the same location of the
scene on different views) should be close in an embedding space, while
non-matching features should be apart. VADeR provides a natural representation
for dense prediction tasks and transfers well to downstream tasks. Our method
outperforms ImageNet supervised pretraining (and strong unsupervised baselines)
in multiple dense prediction tasks.
- Abstract(参考訳): 対照的な自己教師あり学習は教師なしの視覚表現学習に有望なアプローチとして現れてきた。
一般に、これらの手法は、同じ画像の異なるビュー(すなわちデータ拡張の構成)に不変なグローバル(イメージレベル)表現を学習する。
しかし、多くの視覚的理解タスクは密度(ピクセルレベル)の表現を必要とする。
本稿では,高密度表現の教師なし学習のためのVADeR(View-Agnostic Dense Representation)を提案する。
VADeRは、異なる視聴条件に対して局所的な特徴を一定に保ち続けるように強制することで、ピクセルワイズ表現を学習する。
特に、これはピクセルレベルのコントラスト学習によって達成される: マッチング機能(つまり、異なるビュー上のシーンの同じ位置を示す機能)は、埋め込み空間に近くなければならないが、非マッチング機能は分離されるべきである。
VADeRは、密度の高い予測タスクの自然な表現を提供し、下流タスクにうまく転送する。
提案手法は、複数の密集予測タスクにおいて、ImageNetの教師付き事前学習(および強力な教師なしベースライン)より優れる。
関連論文リスト
- MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Self-supervised Contrastive Learning for Cross-domain Hyperspectral
Image Representation [26.610588734000316]
本稿では,アノテートが本質的に困難であるハイパースペクトル画像に適した自己教師型学習フレームワークを提案する。
提案するフレームワークアーキテクチャは、クロスドメインCNNを利用して、異なるハイパースペクトル画像から表現を学習する。
実験結果は、スクラッチや他の移動学習法から学習したモデルに対して、提案した自己教師型表現の利点を示す。
論文 参考訳(メタデータ) (2022-02-08T16:16:45Z) - Dense Semantic Contrast for Self-Supervised Visual Representation
Learning [12.636783522731392]
意味圏決定境界を密度の高いレベルでモデル化するためのDense Semantic Contrast(DSC)を提案する。
本稿では,多粒度表現学習のためのクロスイメージ・セマンティック・コントラッシブ・ラーニング・フレームワークを提案する。
実験結果から,DSCモデルは下流の高密度予測タスクに転送する場合に,最先端の手法よりも優れることがわかった。
論文 参考訳(メタデータ) (2021-09-16T07:04:05Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
我々は、未ラベル画像の集合から画像特徴を学習するための新しいディープラーニングトレーニングパラダイムであるAugNetを提案する。
実験により,低次元空間における画像の表現が可能であることを実証した。
多くのディープラーニングベースの画像検索アルゴリズムとは異なり、我々のアプローチは外部アノテーション付きデータセットへのアクセスを必要としない。
論文 参考訳(メタデータ) (2021-06-11T09:02:30Z) - Exploring Cross-Image Pixel Contrast for Semantic Segmentation [130.22216825377618]
完全教師付きセッティングにおけるセマンティックセグメンテーションのための画素単位のコントラストフレームワークを提案する。
中心となる考え方は、同じセマンティッククラスに属するピクセルの埋め込みを、異なるクラスの埋め込みよりもよく似ているように強制することである。
テスト中に余分なオーバーヘッドを伴わずに既存のセグメンテーションフレームワークに懸命に組み込むことができる。
論文 参考訳(メタデータ) (2021-01-28T11:35:32Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
一つの画像から生成されたビューをtextbfCross-samples や Multi-level representation に拡張することで,階層的なセマンティックアライメント戦略を提案する。
提案手法はCsMlと呼ばれ,サンプル間の多層視覚表現を堅牢な方法で統合する機能を備えている。
論文 参考訳(メタデータ) (2020-12-04T17:26:24Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
自己教師付き表現学習ターゲットは、ラベルなしデータから畳み込みに基づく画像表現を学習する。
この分野におけるNLP手法の成功に触発された本研究では,空間的に高密度な画像記述に基づく自己教師型アプローチを提案する。
論文 参考訳(メタデータ) (2020-02-27T16:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。