論文の概要: Multilingual Irony Detection with Dependency Syntax and Neural Models
- arxiv url: http://arxiv.org/abs/2011.05706v1
- Date: Wed, 11 Nov 2020 11:22:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 23:57:49.987366
- Title: Multilingual Irony Detection with Dependency Syntax and Neural Models
- Title(参考訳): 依存構文とニューラルモデルを用いた多言語アイアン検出
- Authors: Alessandra Teresa Cignarella, Valerio Basile, Manuela Sanguinetti,
Cristina Bosco, Paolo Rosso and Farah Benamara
- Abstract要約: これは構文知識からの貢献に焦点を当て、普遍依存スキームに従って構文が注釈付けされた言語資源を活用する。
その結果, 依存性をベースとした微粒な構文情報は, アイロンの検出に有用であることが示唆された。
- 参考スコア(独自算出の注目度): 61.32653485523036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an in-depth investigation of the effectiveness of
dependency-based syntactic features on the irony detection task in a
multilingual perspective (English, Spanish, French and Italian). It focuses on
the contribution from syntactic knowledge, exploiting linguistic resources
where syntax is annotated according to the Universal Dependencies scheme. Three
distinct experimental settings are provided. In the first, a variety of
syntactic dependency-based features combined with classical machine learning
classifiers are explored. In the second scenario, two well-known types of word
embeddings are trained on parsed data and tested against gold standard
datasets. In the third setting, dependency-based syntactic features are
combined into the Multilingual BERT architecture. The results suggest that
fine-grained dependency-based syntactic information is informative for the
detection of irony.
- Abstract(参考訳): 本稿では,多言語視点(英語,スペイン語,フランス語,イタリア語)における皮肉検出タスクにおける係り受けに基づく構文特徴の有効性について詳細に検討する。
これは構文知識からの貢献に注目し、普遍的依存関係スキームに従って構文を注釈する言語資源を活用している。
3つの異なる実験環境が提供される。
まず、古典的機械学習分類器と組み合わせた様々な構文依存型特徴について考察する。
第2のシナリオでは、2つの有名なワード埋め込みが解析データに基づいてトレーニングされ、ゴールド標準データセットに対してテストされる。
3つ目の設定では、依存性ベースの構文機能はMultilingual BERTアーキテクチャに統合されます。
その結果, 依存性に基づく詳細な構文情報は, アイロンの検出に有用であることが示唆された。
関連論文リスト
- Exploring syntactic information in sentence embeddings through multilingual subject-verb agreement [1.4335183427838039]
我々は,特定の特性を持つ大規模でキュレートされた合成データを開発するためのアプローチを採っている。
我々は、ブラックバード言語行列(Blackbird Language Matrices)と呼ばれる新しい複数選択タスクとデータセットを使用して、特定の文法構造現象に焦点を当てる。
多言語テキストを一貫した方法で訓練したにもかかわらず、多言語事前学習言語モデルには言語固有の違いがあることが示される。
論文 参考訳(メタデータ) (2024-09-10T14:58:55Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - A Pilot Study on Dialogue-Level Dependency Parsing for Chinese [21.698966896156087]
850の対話と199,803の依存関係を含む高品質な人間注釈コーパスを開発する。
このようなタスクはアノテーションのコストが高いため、ゼロショットと少数ショットのシナリオを調査する。
既存のシンタクティックツリーバンクをベースとした信号ベースの手法により、目に見えないシンタクティック依存関係を非表示のツリーバンクに変換する。
論文 参考訳(メタデータ) (2023-05-21T12:20:13Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Multi-grained Label Refinement Network with Dependency Structures for
Joint Intent Detection and Slot Filling [13.963083174197164]
発話の意図と意味的構成要素は、文の構文的要素に依存する。
本稿では,依存性構造とラベルセマンティック埋め込みを利用した多層ラベル精細ネットワークについて検討する。
構文表現の強化を考慮し,グラフアテンション層による文の係り受け構造をモデルに導入する。
論文 参考訳(メタデータ) (2022-09-09T07:27:38Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - Mutlitask Learning for Cross-Lingual Transfer of Semantic Dependencies [21.503766432869437]
我々は,意味的アノテーションのない言語に対して,広範囲なセマンティック依存関係を開発する。
我々はアノテーション投影法と組み合わせたマルチタスク学習フレームワークを利用する。
ドメイン内のSemEvalデータにおいて、最良マルチタスクモデルにより、単一タスクベースライン上のラベル付きF1スコアが1.8向上することを示す。
論文 参考訳(メタデータ) (2020-04-30T17:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。