DeepSim: Semantic similarity metrics for learned image registration
- URL: http://arxiv.org/abs/2011.05735v1
- Date: Wed, 11 Nov 2020 12:35:07 GMT
- Title: DeepSim: Semantic similarity metrics for learned image registration
- Authors: Steffen Czolbe, Oswin Krause, Aasa Feragen
- Abstract summary: We propose a semantic similarity metric for image registration.
Our approach learns dataset-specific features that drive the optimization of a learning-based registration model.
- Score: 6.789370732159177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a semantic similarity metric for image registration. Existing
metrics like euclidean distance or normalized cross-correlation focus on
aligning intensity values, giving difficulties with low intensity contrast or
noise. Our semantic approach learns dataset-specific features that drive the
optimization of a learning-based registration model. Comparing to existing
unsupervised and supervised methods across multiple image modalities and
applications, we achieve consistently high registration accuracy and faster
convergence than state of the art, and the learned invariance to noise gives
smoother transformations on low-quality images.
Related papers
- MsMorph: An Unsupervised pyramid learning network for brain image registration [4.000367245594772]
MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
arXiv Detail & Related papers (2024-10-23T19:20:57Z) - Introspective Deep Metric Learning [91.47907685364036]
We propose an introspective deep metric learning framework for uncertainty-aware comparisons of images.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling.
arXiv Detail & Related papers (2023-09-11T16:21:13Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Introspective Deep Metric Learning for Image Retrieval [80.29866561553483]
We argue that a good similarity model should consider the semantic discrepancies with caution to better deal with ambiguous images for more robust training.
We propose to represent an image using not only a semantic embedding but also an accompanying uncertainty embedding, which describes the semantic characteristics and ambiguity of an image, respectively.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling and attains state-of-the-art results on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets.
arXiv Detail & Related papers (2022-05-09T17:51:44Z) - Robust Contrastive Learning against Noisy Views [79.71880076439297]
We propose a new contrastive loss function that is robust against noisy views.
We show that our approach provides consistent improvements over the state-of-the-art image, video, and graph contrastive learning benchmarks.
arXiv Detail & Related papers (2022-01-12T05:24:29Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - A low-rank representation for unsupervised registration of medical
images [10.499611180329804]
We propose a novel approach based on a low-rank representation, i.e., Regnet-LRR, to tackle the problem of noisy data registration scenarios.
We show that the low-rank representation can boost the ability and robustness of models as well as bring significant improvements in noisy data registration scenarios.
arXiv Detail & Related papers (2021-05-20T07:04:10Z) - Semantic similarity metrics for learned image registration [10.355938901584565]
We propose a semantic similarity metric for image registration.
Our approach learns dataset-specific features that drive the optimization of a learning-based registration model.
We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration.
arXiv Detail & Related papers (2021-04-20T15:23:58Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
We propose to extend current learning-based image registration to allow simultaneous registration of multiple images.
We present a general mathematical framework that enables both registration of multiple images to their viscous geodesic average and registration in which any of the available images can be used as a fixed image.
arXiv Detail & Related papers (2020-10-01T07:37:28Z) - CoMIR: Contrastive Multimodal Image Representation for Registration [4.543268895439618]
We propose contrastive coding to learn shared, dense image representations, referred to as CoMIRs (Contrastive Multimodal Image Representations)
CoMIRs enable the registration of multimodal images where existing registration methods often fail due to a lack of sufficiently similar image structures.
arXiv Detail & Related papers (2020-06-11T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.