MsMorph: An Unsupervised pyramid learning network for brain image registration
- URL: http://arxiv.org/abs/2410.18228v1
- Date: Wed, 23 Oct 2024 19:20:57 GMT
- Title: MsMorph: An Unsupervised pyramid learning network for brain image registration
- Authors: Jiaofen Nan, Gaodeng Fan, Kaifan Zhang, Chen Zhao, Fubao Zhu, Weihua Zhou,
- Abstract summary: MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
- Score: 4.000367245594772
- License:
- Abstract: In the field of medical image analysis, image registration is a crucial technique. Despite the numerous registration models that have been proposed, existing methods still fall short in terms of accuracy and interpretability. In this paper, we present MsMorph, a deep learning-based image registration framework aimed at mimicking the manual process of registering image pairs to achieve more similar deformations, where the registered image pairs exhibit consistency or similarity in features. By extracting the feature differences between image pairs across various as-pects using gradients, the framework decodes semantic information at different scales and continuously compen-sates for the predicted deformation field, driving the optimization of parameters to significantly improve registration accuracy. The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods to predict the deformation field between the two images, which provides strong interpretability. We compared several existing registration methods on two public brain MRI datasets, including LPBA and Mindboggle. The experimental results show that our method consistently outperforms state of the art in terms of metrics such as Dice score, Hausdorff distance, average symmetric surface distance, and non-Jacobian. The source code is publicly available at https://github.com/GaodengFan/MsMorph
Related papers
- Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - A Robust and Interpretable Deep Learning Framework for Multi-modal
Registration via Keypoints [10.913822141584795]
We present KeyMorph, a deep learning-based image registration framework.
KeyMorph relies on automatically detecting corresponding keypoints.
We show registration accuracy that surpasses current state-of-the-art methods.
arXiv Detail & Related papers (2023-04-19T19:35:25Z) - Breaking Modality Disparity: Harmonized Representation for Infrared and
Visible Image Registration [66.33746403815283]
We propose a scene-adaptive infrared and visible image registration.
We employ homography to simulate the deformation between different planes.
We propose the first ground truth available misaligned infrared and visible image dataset.
arXiv Detail & Related papers (2023-04-12T06:49:56Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Semantic similarity metrics for learned image registration [10.355938901584565]
We propose a semantic similarity metric for image registration.
Our approach learns dataset-specific features that drive the optimization of a learning-based registration model.
We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration.
arXiv Detail & Related papers (2021-04-20T15:23:58Z) - DeepSim: Semantic similarity metrics for learned image registration [6.789370732159177]
We propose a semantic similarity metric for image registration.
Our approach learns dataset-specific features that drive the optimization of a learning-based registration model.
arXiv Detail & Related papers (2020-11-11T12:35:07Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
We propose to extend current learning-based image registration to allow simultaneous registration of multiple images.
We present a general mathematical framework that enables both registration of multiple images to their viscous geodesic average and registration in which any of the available images can be used as a fixed image.
arXiv Detail & Related papers (2020-10-01T07:37:28Z) - CoMIR: Contrastive Multimodal Image Representation for Registration [4.543268895439618]
We propose contrastive coding to learn shared, dense image representations, referred to as CoMIRs (Contrastive Multimodal Image Representations)
CoMIRs enable the registration of multimodal images where existing registration methods often fail due to a lack of sufficiently similar image structures.
arXiv Detail & Related papers (2020-06-11T10:51:33Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.