論文の概要: A survey on practical adversarial examples for malware classifiers
- arxiv url: http://arxiv.org/abs/2011.05973v1
- Date: Fri, 6 Nov 2020 17:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 05:43:36.087463
- Title: A survey on practical adversarial examples for malware classifiers
- Title(参考訳): マルウェア分類器の実用化事例に関する調査研究
- Authors: Daniel Park and B\"ulent Yener
- Abstract要約: ディープニューラルネットワークは敵の例に弱いことが判明した。
この脆弱性を悪用して、回避可能なマルウェアサンプルを作成することができる。
敵のマルウェアの例を生成するマルウェア分類器に対する実践的な攻撃についてレビューする。
- 参考スコア(独自算出の注目度): 0.17767466724342065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based solutions have been very helpful in solving problems
that deal with immense amounts of data, such as malware detection and
classification. However, deep neural networks have been found to be vulnerable
to adversarial examples, or inputs that have been purposefully perturbed to
result in an incorrect label. Researchers have shown that this vulnerability
can be exploited to create evasive malware samples. However, many proposed
attacks do not generate an executable and instead generate a feature vector. To
fully understand the impact of adversarial examples on malware detection, we
review practical attacks against malware classifiers that generate executable
adversarial malware examples. We also discuss current challenges in this area
of research, as well as suggestions for improvement and future research
directions.
- Abstract(参考訳): 機械学習ベースのソリューションは、マルウェアの検出や分類など、大量のデータを扱う問題の解決に非常に役立っている。
しかし、ディープニューラルネットワークは、悪意のある例や故意に摂動された入力に対して脆弱であることが判明し、誤ったラベルが生成される。
研究者たちは、この脆弱性を悪用して、回避可能なマルウェアサンプルを作成できることを示した。
しかし、多くの攻撃は実行可能ファイルを生成しず、代わりに特徴ベクトルを生成する。
マルウェア検出における敵例の影響を解明するために,実行可能マルウェア例を生成するマルウェア分類器に対する実践的な攻撃について検討する。
また、この領域における現在の課題と、改善と今後の研究方向性の提案についても論じる。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Explainability-Informed Targeted Malware Misclassification [0.0]
マルウェア分類をカテゴリに分類する機械学習モデルは有望な結果を示している。
ディープニューラルネットワークは、意図的な敵攻撃に対する脆弱性を示している。
本稿では,ニューラルネットワークを用いたマルウェア分類システムにおいて,このような攻撃的脆弱性について検討する。
論文 参考訳(メタデータ) (2024-05-07T04:59:19Z) - A Malware Classification Survey on Adversarial Attacks and Defences [0.0]
ディープラーニングモデルはマルウェアの検出には有効だが、敵の攻撃に対して脆弱である。
このような攻撃は、検出に抵抗する悪意のあるファイルを生成し、重大なサイバーセキュリティリスクを生み出す。
近年の研究では、いくつかの敵対的攻撃と反応のアプローチが開発されている。
論文 参考訳(メタデータ) (2023-12-15T09:25:48Z) - Towards a Practical Defense against Adversarial Attacks on Deep
Learning-based Malware Detectors via Randomized Smoothing [3.736916304884177]
本稿では,ランダムな平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,入力のランダム化にガウスノイズやラプラスノイズを使う代わりに,ランダム化アブレーションに基づく平滑化方式を提案する。
BODMASデータセットに対する様々な最先端の回避攻撃に対するアブレーションモデルの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2023-08-17T10:30:25Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarial Patterns: Building Robust Android Malware Classifiers [0.9208007322096533]
サイバーセキュリティの分野では、機械学習モデルがマルウェア検出において大幅に改善されている。
構造化されていないデータから複雑なパターンを理解する能力があるにもかかわらず、これらのモデルは敵攻撃の影響を受けやすい。
本稿では,Androidマルウェア分類器の文脈における敵機械学習の包括的レビューを行う。
論文 参考訳(メタデータ) (2022-03-04T03:47:08Z) - A Review of Adversarial Attack and Defense for Classification Methods [78.50824774203495]
本稿では,敵対的事例の生成と保護に焦点をあてる。
この論文は、多くの統計学者が、この重要かつエキサイティングな分野において、敵の事例を生成・防御することを奨励するものである。
論文 参考訳(メタデータ) (2021-11-18T22:13:43Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。