Single-quadrature quantum magnetometry in cavity electromagnonics
- URL: http://arxiv.org/abs/2011.06081v5
- Date: Sat, 29 May 2021 19:03:45 GMT
- Title: Single-quadrature quantum magnetometry in cavity electromagnonics
- Authors: Mehri Sadat Ebrahimi, Ali Motazedifard, and Malek Bagheri Harouni
- Abstract summary: Scheme of ultra-sensitive magnetometer in the cavity quantum electromagnonics is proposed.
Intracavity microwave mode coupled to a magnonic mode via magnetic dipole interaction is proposed.
The estimated theoretical sensitivity of the proposed magnetic amplifier-sensor is approximately in the order of $10-18T/sqrtHz$ which is competitive compared to the current state-of-the-art magnetometers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A scheme of an ultra-sensitive magnetometer in the cavity quantum
electromagnonics where the intracavity microwave mode coupled to a magnonic
mode via magnetic dipole interaction is proposed. It is shown that by driving
both magnonic and microwave modes with external classical fields and
controlling the system parameters, one can reduce the added noise of magnetic
field measurement below the standard quantum limit (SQL). Surprisingly, we show
that beyond the rotating wave approximation (RWA), not only the added noise can
be suppressed, but also the output cavity response to the input signal can be
substantially amplified in order to achieve a precise magnetic-field
measurement. The estimated theoretical sensitivity of the proposed magnetic
amplifier-sensor is approximately in the order of $10^{-18}T/\sqrt{Hz}$ which
is competitive compared to the current state-of-the-art magnetometers like
superconducting quantum interference devices (SQUIDs) and atomic magnetometers.
The advantage of the proposed sensor in comparison with the other magnetometers
is its high sensitivity at room temperature and sensing in a wide range of
frequency up to MHz as well as its capability to signal-response amplification.
Related papers
- A spin-refrigerated cavity quantum electrodynamic sensor [1.6713959634020665]
Quantum sensors based on solid-state defects, in particular nitrogen-vacancy centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields.
We introduce a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble.
We demonstrate a broadband sensitivity of 580 fT/$sqrtmathrmHz$ around 15 kHz in ambient conditions.
arXiv Detail & Related papers (2024-04-16T14:56:50Z) - Zero-field optical magnetometer based on spin-alignment [0.2407976495888858]
This research focuses on utilizing a spin-aligned atomic ensemble for magnetometry at zero-field.
The sensitivity and bandwidth of the magnetometer are characterized based on the detected polarization rotation signal.
Lastly, the practical utility of the magnetometer for medical applications is demonstrated by successfully detecting a synthetic cardiac signal.
arXiv Detail & Related papers (2023-08-23T16:15:10Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Ferrimagnetic Oscillator Magnetometer [0.0]
The device exhibits a fixed, calibration-free response governed by the electronmagnetic gyro ratio.
The device achieves a minimum sensitivity of 100 fT/$sqrttextHz$ to AC magnetic fields of unknown phase.
arXiv Detail & Related papers (2023-05-31T15:21:57Z) - Improving Sensitivity of an Amplitude-Modulated Magneto-Optical Atomic
Magnetometer using Squeezed Light [10.396267889929488]
A squeezed probe optical field can improve the sensitivity of the magnetic field measurements based on nonlinear magneto-optical rotation.
An independent pump field, amplitude-modulated at the Larmor frequency of the bias magnetic field, allows us to extend the range of most sensitive NMOR measurements to sub-Gauss magnetic fields.
arXiv Detail & Related papers (2022-07-26T15:15:44Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.