Image Anomaly Detection by Aggregating Deep Pyramidal Representations
- URL: http://arxiv.org/abs/2011.06288v1
- Date: Thu, 12 Nov 2020 09:58:27 GMT
- Title: Image Anomaly Detection by Aggregating Deep Pyramidal Representations
- Authors: Pankaj Mishra, Claudio Piciarelli, Gian Luca Foresti
- Abstract summary: Anomaly detection consists in identifying, within a dataset, those samples that significantly differ from the majority of the data.
This paper focuses on image anomaly detection using a deep neural network with multiple pyramid levels to analyze the image features at different scales.
- Score: 16.246831343527052
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection consists in identifying, within a dataset, those samples
that significantly differ from the majority of the data, representing the
normal class. It has many practical applications, e.g. ranging from defective
product detection in industrial systems to medical imaging. This paper focuses
on image anomaly detection using a deep neural network with multiple pyramid
levels to analyze the image features at different scales. We propose a network
based on encoding-decoding scheme, using a standard convolutional autoencoders,
trained on normal data only in order to build a model of normality. Anomalies
can be detected by the inability of the network to reconstruct its input.
Experimental results show a good accuracy on MNIST, FMNIST and the recent MVTec
Anomaly Detection dataset
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Reconstructed Student-Teacher and Discriminative Networks for Anomaly
Detection [8.35780131268962]
A powerful anomaly detection method is proposed based on student-teacher feature pyramid matching (STPM), which consists of a student and teacher network.
To improve the accuracy of STPM, this work uses a student network, as in generative models, to reconstruct normal features.
To further improve accuracy, a discriminative network trained with pseudo-anomalies from anomaly maps is used in our method.
arXiv Detail & Related papers (2022-10-14T05:57:50Z) - Anomaly Detection using Generative Models and Sum-Product Networks in
Mammography Scans [2.2515303891664358]
Autoencoders and generative adversarial networks are the standard anomaly detection methods.
We propose a novel combination of generative models and a graphical model.
We observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.
arXiv Detail & Related papers (2022-10-12T13:18:16Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
User activities generate a significant number of poor-quality or irrelevant images and data vectors.
For neural networks, the anomalous is usually defined as out-of-distribution samples.
This work proposes methods for supervised and semi-supervised detection of out-of-distribution samples in image datasets.
arXiv Detail & Related papers (2021-04-13T13:44:03Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
Anomalies in images occur in various scales from a small hole on a carpet to a large stain.
One of the widely used anomaly detection methods, sparse coding, has an issue in dealing with anomalies that are out of the patch size employed to sparsely represent images.
We propose to incorporate multi-scale features to sparse coding and improve the performance of anomaly detection.
arXiv Detail & Related papers (2021-04-09T10:20:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.