Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
- URL: http://arxiv.org/abs/2403.12570v1
- Date: Tue, 19 Mar 2024 09:28:19 GMT
- Title: Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
- Authors: Chaoqin Huang, Aofan Jiang, Jinghao Feng, Ya Zhang, Xinchao Wang, Yanfeng Wang,
- Abstract summary: This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
- Score: 68.42215385041114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large-scale visual-language pre-trained models have led to significant progress in zero-/few-shot anomaly detection within natural image domains. However, the substantial domain divergence between natural and medical images limits the effectiveness of these methodologies in medical anomaly detection. This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection. Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels. This multi-level adaptation is guided by multi-level, pixel-wise visual-language feature alignment loss functions, which recalibrate the model's focus from object semantics in natural imagery to anomaly identification in medical images. The adapted features exhibit improved generalization across various medical data types, even in zero-shot scenarios where the model encounters unseen medical modalities and anatomical regions during training. Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models, with an average AUC improvement of 6.24% and 7.33% for anomaly classification, 2.03% and 2.37% for anomaly segmentation, under the zero-shot and few-shot settings, respectively. Source code is available at: https://github.com/MediaBrain-SJTU/MVFA-AD
Related papers
- Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly [4.387337528923525]
Anomaly detection deals with detecting deviations from established patterns within data.
We propose a novel framework for online-adaptive anomaly detection using transfer learning.
Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
arXiv Detail & Related papers (2024-06-18T15:11:44Z) - AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection [30.679012320439625]
AnomalyCLIP learns object-agnostic text prompts to capture generic normality and abnormality in an image.
It achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics.
arXiv Detail & Related papers (2023-10-29T10:03:49Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.