Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss
- URL: http://arxiv.org/abs/2011.06679v2
- Date: Thu, 28 Jan 2021 18:47:34 GMT
- Title: Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss
- Authors: Ross Greer, Nachiket Deo, and Mohan Trivedi
- Abstract summary: We propose a loss function which enhances trajectory prediction models by enforcing expected driving rules on all predicted modes.
Our contribution to trajectory prediction is twofold; we propose a new metric which addresses failure cases of the off-road rate metric.
We then use this auxiliary loss to extend the the standard multiple trajectory prediction (MTP) and MultiPath models.
- Score: 1.1470070927586014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting a vehicle's trajectory is an essential ability for autonomous
vehicles navigating through complex urban traffic scenes. Bird's-eye-view
roadmap information provides valuable information for making trajectory
predictions, and while state-of-the-art models extract this information via
image convolution, auxiliary loss functions can augment patterns inferred from
deep learning by further encoding common knowledge of social and legal driving
behaviors. Since human driving behavior is inherently multimodal, models which
allow for multimodal output tend to outperform single-prediction models on
standard metrics. We propose a loss function which enhances such models by
enforcing expected driving rules on all predicted modes. Our contribution to
trajectory prediction is twofold; we propose a new metric which addresses
failure cases of the off-road rate metric by penalizing trajectories that
oppose the ascribed heading (flow direction) of a driving lane, and we show
this metric to be differentiable and therefore suitable as an auxiliary loss
function. We then use this auxiliary loss to extend the the standard multiple
trajectory prediction (MTP) and MultiPath models, achieving improved results on
the nuScenes prediction benchmark by predicting trajectories which better
conform to the lane-following rules of the road.
Related papers
- Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Multimodal Manoeuvre and Trajectory Prediction for Automated Driving on
Highways Using Transformer Networks [5.571793666361683]
We propose a novel multimodal prediction framework that can predict multiple plausible behaviour modes and their likelihoods.
The proposed framework includes a bespoke problem formulation for manoeuvre prediction, a novel transformer-based prediction model, and a tailored training method for multimodal manoeuvre and trajectory prediction.
The results show that our framework outperforms the state-of-the-art multimodal methods in terms of prediction error.
arXiv Detail & Related papers (2023-03-28T16:25:16Z) - Improving Diversity of Multiple Trajectory Prediction based on
Map-adaptive Lane Loss [12.963269946571476]
This study proposes a novel loss function, textitLane Loss, that ensures map-adaptive diversity and accommodates geometric constraints.
Experiments performed on the Argoverse dataset show that the proposed method significantly improves the diversity of the predicted trajectories.
arXiv Detail & Related papers (2022-06-17T09:09:51Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Ellipse Loss for Scene-Compliant Motion Prediction [12.446392441065065]
We propose a novel ellipse loss that allows the models to better reason about scene compliance and predict more realistic trajectories.
Ellipse loss penalizes off-road predictions directly in a supervised manner, by projecting the output trajectories into the top-down map frame.
It takes into account actor dimensions and orientation, providing more direct training signals to the model.
arXiv Detail & Related papers (2020-11-05T23:33:56Z) - Motion Prediction using Trajectory Sets and Self-Driving Domain
Knowledge [3.0938904602244355]
We build on classification-based approaches to motion prediction by adding an auxiliary loss that penalizes off-road predictions.
This auxiliary loss can easily be pretrained using only map information, which significantly improves performance on small datasets.
Our final contribution is a detailed comparison of classification and ordinal regression on two public self-driving datasets.
arXiv Detail & Related papers (2020-06-08T17:37:15Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.