A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses
- URL: http://arxiv.org/abs/2411.19747v1
- Date: Fri, 29 Nov 2024 14:47:08 GMT
- Title: A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses
- Authors: Ahmad Rahimi, Alexandre Alahi,
- Abstract summary: Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
- Score: 68.68514648185828
- License:
- Abstract: Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles. However, current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements. Addressing these limitations, this study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss. These functions are designed to keep predicted paths within driving area boundaries, aligned with traffic directions, and cover a wider variety of plausible driving scenarios. As all prediction modes should adhere to road rules and conditions, this work overcomes the shortcomings of traditional "winner takes all" training methods by applying the loss functions to all prediction modes. These loss functions not only improve model training but can also serve as metrics for evaluating the realism and diversity of trajectory predictions. Extensive validation on the nuScenes and Argoverse 2 datasets with leading baseline models demonstrates that our approach not only maintains accuracy but significantly improves safety and robustness, reducing offroad errors on average by 47% on original and by 37% on attacked scenes. This work sets a new benchmark for trajectory prediction in autonomous driving, offering substantial improvements in navigating complex environments. Our code is available at https://github.com/vita-epfl/stay-on-track .
Related papers
- Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Improving Diversity of Multiple Trajectory Prediction based on
Map-adaptive Lane Loss [12.963269946571476]
This study proposes a novel loss function, textitLane Loss, that ensures map-adaptive diversity and accommodates geometric constraints.
Experiments performed on the Argoverse dataset show that the proposed method significantly improves the diversity of the predicted trajectories.
arXiv Detail & Related papers (2022-06-17T09:09:51Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
We propose a loss function which enhances trajectory prediction models by enforcing expected driving rules on all predicted modes.
Our contribution to trajectory prediction is twofold; we propose a new metric which addresses failure cases of the off-road rate metric.
We then use this auxiliary loss to extend the the standard multiple trajectory prediction (MTP) and MultiPath models.
arXiv Detail & Related papers (2020-11-12T22:51:25Z) - Ellipse Loss for Scene-Compliant Motion Prediction [12.446392441065065]
We propose a novel ellipse loss that allows the models to better reason about scene compliance and predict more realistic trajectories.
Ellipse loss penalizes off-road predictions directly in a supervised manner, by projecting the output trajectories into the top-down map frame.
It takes into account actor dimensions and orientation, providing more direct training signals to the model.
arXiv Detail & Related papers (2020-11-05T23:33:56Z) - Motion Prediction using Trajectory Sets and Self-Driving Domain
Knowledge [3.0938904602244355]
We build on classification-based approaches to motion prediction by adding an auxiliary loss that penalizes off-road predictions.
This auxiliary loss can easily be pretrained using only map information, which significantly improves performance on small datasets.
Our final contribution is a detailed comparison of classification and ordinal regression on two public self-driving datasets.
arXiv Detail & Related papers (2020-06-08T17:37:15Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.