Power System Event Identification based on Deep Neural Network with
Information Loading
- URL: http://arxiv.org/abs/2011.06718v2
- Date: Wed, 28 Apr 2021 21:48:39 GMT
- Title: Power System Event Identification based on Deep Neural Network with
Information Loading
- Authors: Jie Shi, Brandon Foggo, Nanpeng Yu
- Abstract summary: Deep neural network (DNN) based approach to identify and classify power system events.
Two innovative designs are embedded into the baseline model built on convolutional neural networks (CNNs)
- Score: 6.237746217912897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online power system event identification and classification is crucial to
enhancing the reliability of transmission systems. In this paper, we develop a
deep neural network (DNN) based approach to identify and classify power system
events by leveraging real-world measurements from hundreds of phasor
measurement units (PMUs) and labels from thousands of events. Two innovative
designs are embedded into the baseline model built on convolutional neural
networks (CNNs) to improve the event classification accuracy. First, we propose
a graph signal processing based PMU sorting algorithm to improve the learning
efficiency of CNNs. Second, we deploy information loading based regularization
to strike the right balance between memorization and generalization for the
DNN. Numerical studies results based on real-world dataset from the Eastern
Interconnection of the U.S power transmission grid show that the combination of
PMU based sorting and the information loading based regularization techniques
help the proposed DNN approach achieve highly accurate event identification and
classification results.
Related papers
- Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Deep Neural Network based Wide-Area Event Classification in Power
Systems [2.2442786393371725]
Deep neural network (DNN) based classification is developed based on availability of data from time-synchronized phasor measurement units (PMUs)
The effectiveness of the proposed event classification is validated through the real-world dataset of the U.S. transmission grids.
arXiv Detail & Related papers (2020-08-24T01:32:57Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning.
This paper introduces an online learning rule based on generalized expectation-maximization (GEM)
Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration.
arXiv Detail & Related papers (2020-07-23T10:03:58Z) - File Classification Based on Spiking Neural Networks [0.5065947993017157]
We propose a system for file classification in large data sets based on spiking neural networks (SNNs)
The proposed system may represent a valid alternative to classical machine learning algorithms for inference tasks.
arXiv Detail & Related papers (2020-04-08T11:50:29Z) - 1D CNN Based Network Intrusion Detection with Normalization on
Imbalanced Data [0.19336815376402716]
Intrusion detection system (IDS) plays an essential role in computer networks protecting computing resources and data from outside attacks.
Recent IDS faces challenges improving flexibility and efficiency of the IDS for unexpected and unpredictable attacks.
We propose a deep learning approach for developing the efficient and flexible IDS using one-dimensional Convolutional Neural Network (1D-CNN)
arXiv Detail & Related papers (2020-03-01T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.