論文の概要: Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2011.06751v2
- Date: Wed, 25 Nov 2020 05:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 00:11:20.661220
- Title: Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural
Networks
- Title(参考訳): 量子化深層ニューラルネットワークの微調整改善のためのフィルタプリプルーニング
- Authors: Jun Nishikawa, Ryoji Ikegaya
- Abstract要約: 本稿では,DNNの微調整を妨害するフィルタを除去するPruning for Quantization (PfQ)と呼ばれる新しいプルーニング手法を提案する。
良く知られたモデルとデータセットを用いた実験により,提案手法が類似したモデルサイズで高い性能を実現することを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks(DNNs) have many parameters and activation data, and
these both are expensive to implement. One method to reduce the size of the DNN
is to quantize the pre-trained model by using a low-bit expression for weights
and activations, using fine-tuning to recover the drop in accuracy. However, it
is generally difficult to train neural networks which use low-bit expressions.
One reason is that the weights in the middle layer of the DNN have a wide
dynamic range and so when quantizing the wide dynamic range into a few bits,
the step size becomes large, which leads to a large quantization error and
finally a large degradation in accuracy. To solve this problem, this paper
makes the following three contributions without using any additional learning
parameters and hyper-parameters. First, we analyze how batch normalization,
which causes the aforementioned problem, disturbs the fine-tuning of the
quantized DNN. Second, based on these results, we propose a new pruning method
called Pruning for Quantization (PfQ) which removes the filters that disturb
the fine-tuning of the DNN while not affecting the inferred result as far as
possible. Third, we propose a workflow of fine-tuning for quantized DNNs using
the proposed pruning method(PfQ). Experiments using well-known models and
datasets confirmed that the proposed method achieves higher performance with a
similar model size than conventional quantization methods including
fine-tuning.
- Abstract(参考訳): Deep Neural Networks(DNN)には多くのパラメータとアクティベーションデータがあり、いずれも実装に費用がかかる。
DNNのサイズを小さくする方法の1つは、重みとアクティベーションの低ビット式を用いて事前訓練されたモデルを定量化し、微調整により精度の低下を回復することである。
しかし、一般に低ビット表現を用いたニューラルネットワークのトレーニングは困難である。
1つの理由は、DNNの中間層における重みが広いダイナミックレンジであるため、広ダイナミックレンジを数ビットに量子化すると、ステップサイズが大きくなり、量子化誤差が大きくなり、最終的に精度が大幅に低下するからである。
そこで本研究では,追加の学習パラメータやハイパーパラメータを使わずに,以下の3つのコントリビューションを行う。
まず,上記の問題を引き起こすバッチ正規化が,量子化dnnの微調整を阻害する原因について解析する。
第2に、これらの結果に基づいて、推定結果に極力影響を与えずにDNNの微調整を妨害するフィルタを除去するPruning for Quantization (PfQ)と呼ばれる新しいプルーニング手法を提案する。
第3に,提案手法(PfQ)を用いた量子化DNNの微調整ワークフローを提案する。
既知のモデルとデータセットを用いた実験により,提案手法は,微調整を含む従来の量子化法と類似したモデルサイズで高い性能が得られることを確認した。
関連論文リスト
- Low-bit Quantization for Deep Graph Neural Networks with
Smoothness-aware Message Propagation [3.9177379733188715]
本稿では,資源制約のある環境において,これらの課題に対処するためのエンドツーエンドソリューションを提案する。
本稿では,学習中のメッセージパッシングからノード分類まで,GNNのすべての段階に対する量子化に基づくアプローチを提案する。
提案した量子化器は量子化範囲を学習し、低ビット量子化の下でも同等の精度でモデルサイズを削減する。
論文 参考訳(メタデータ) (2023-08-29T00:25:02Z) - Designing strong baselines for ternary neural network quantization
through support and mass equalization [7.971065005161565]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンにおける幅広いアプリケーションにおいて、最高のパフォーマンスを提供する。
浮動小数点値を3次値に定量化することにより、この計算負担を劇的に低減することができる。
提案手法は, 様々なシナリオを用いて三次量子化の性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-30T07:35:07Z) - QEBVerif: Quantization Error Bound Verification of Neural Networks [6.327780998441913]
量子化は、エッジデバイスにディープニューラルネットワーク(DNN)をデプロイするための有望なテクニックとして広く見なされている。
既存の検証方法は、個々のニューラルネットワーク(DNNまたはQNN)または部分量子化のための量子化エラーにフォーカスする。
本稿では、重みとアクティベーションテンソルの両方を量子化する量子化誤差境界検証手法QEBVerifを提案する。
論文 参考訳(メタデータ) (2022-12-06T06:34:38Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z) - Where Should We Begin? A Low-Level Exploration of Weight Initialization
Impact on Quantized Behaviour of Deep Neural Networks [93.4221402881609]
異なる重みの初期化が重みの最終的な分布と異なるCNNアーキテクチャの活性化に与える影響について、詳細なアブレーション研究を行う。
我々の知る限りでは、ウェイトの初期化とその量子化行動に対する影響について、そのような低レベルで詳細な定量分析を行うのは、私たちは初めてである。
論文 参考訳(メタデータ) (2020-11-30T06:54:28Z) - Holistic Filter Pruning for Efficient Deep Neural Networks [25.328005340524825]
HFP(Holistic Filter Pruning)は、実装が容易で正確なプルーニング率の特定が可能な、一般的なDNNトレーニングのための新しいアプローチである。
各種実験において,CIFAR-10 と ImageNet のトレーニングと最先端性能について考察した。
論文 参考訳(メタデータ) (2020-09-17T09:23:36Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - AUSN: Approximately Uniform Quantization by Adaptively Superimposing
Non-uniform Distribution for Deep Neural Networks [0.7378164273177589]
既存の一様および非一様量子化法は、表現範囲と表現解像度の間に固有の矛盾を示す。
重みとアクティベーションを定量化する新しい量子化法を提案する。
鍵となる考え方は、複数の非一様量子化値、すなわち AUSN を適応的に重ね合わせることで、ユニフォーム量子化を近似することである。
論文 参考訳(メタデータ) (2020-07-08T05:10:53Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。