Efficient CNOT Synthesis for NISQ Devices
- URL: http://arxiv.org/abs/2011.06760v1
- Date: Thu, 12 Nov 2020 15:13:32 GMT
- Title: Efficient CNOT Synthesis for NISQ Devices
- Authors: Yao Tang
- Abstract summary: In the era of noisy intermediate-scale quantum (NISQ), executing quantum algorithms on actual quantum devices faces unique challenges.
We propose a CNOT synthesis method called the token reduction method to solve this problem.
Our algorithm consistently outperforms the best publicly accessible algorithm for all of the tested quantum architectures.
- Score: 1.0152838128195467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of noisy intermediate-scale quantum (NISQ), executing quantum
algorithms on actual quantum devices faces unique challenges. One such
challenge is that quantum devices in this era have restricted connectivity:
quantum gates are allowed to act only on specific pairs of physical qubits. For
this reason, a quantum circuit needs to go through a compiling process called
qubit routing before it can be executed on a quantum computer. In this study,
we propose a CNOT synthesis method called the token reduction method to solve
this problem. The token reduction method works for all quantum computers whose
architecture is represented by connected graphs. A major difference between our
method and the existing ones is that our method synthesizes a circuit to an
output qubit mapping that might be different from the input qubit mapping. The
final mapping for the synthesis is determined dynamically during the synthesis
process. Results showed that our algorithm consistently outperforms the best
publicly accessible algorithm for all of the tested quantum architectures.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Parametric Synthesis of Quantum Circuits for Training Perceptron Neural
Networks [0.0]
This paper showcases a method of parametric synthesis of quantum circuits for training perceptron neural networks.
The circuits were run on a 100-qubit IBM quantum simulator.
arXiv Detail & Related papers (2022-09-20T06:16:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum circuit synthesis of Bell and GHZ states using projective
simulation in the NISQ era [0.0]
We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits.
Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
arXiv Detail & Related papers (2021-04-27T16:11:27Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.