Quantum walk processes in quantum devices
- URL: http://arxiv.org/abs/2012.14386v2
- Date: Sat, 22 Apr 2023 10:14:46 GMT
- Title: Quantum walk processes in quantum devices
- Authors: Anandu Kalleri Madhu, Alexey A. Melnikov, Leonid E. Fedichkin,
Alexander Alodjants, Ray-Kuang Lee
- Abstract summary: We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation and programming of current quantum computers as Noisy
Intermediate-Scale Quantum (NISQ) devices represent a hot topic at the border
of current physical and information sciences. The quantum walk process
represents a basic subroutine in many quantum algorithms and plays an important
role in studying physical phenomena. Simulating quantum walk processes is
computationally challenging for classical processors. With an increasing
improvement in qubits fidelity and qubits number in a single register, there is
a potential to improve quantum walks simulations substantially. However,
efficient ways to simulate quantum walks in qubit registers still have to be
explored. Here, we explore the relationship between quantum walk on graphs and
quantum circuits. Firstly, we discuss ways to obtain graphs provided quantum
circuit. We then explore techniques to represent quantum walk on a graph as a
quantum circuit. Specifically, we study hypercube graphs and arbitrary graphs.
Our approach to studying the relationship between graphs and quantum circuits
paves way for the efficient implementation of quantum walks algorithms on
quantum computers.
Related papers
- Review on Quantum Walk Computing: Theory, Implementation, and Application [0.30723404270319693]
The quantum walk is proposed as an important theoretical model for quantum computing.
Quantum walks and their variety have been extensively studied for achieving beyond classical computing power.
Recent progress has been achieved in implementing a wide variety of quantum walks and quantum walk applications.
arXiv Detail & Related papers (2024-04-05T15:45:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantifying information scrambling via Classical Shadow Tomography on
Programmable Quantum Simulators [0.0]
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes.
We measure both signatures, and support our results with numerical simulations of the quantum system.
arXiv Detail & Related papers (2022-02-10T16:36:52Z) - Qsun: an open-source platform towards practical quantum machine learning
applications [0.0]
This paper introduces our quantum virtual machine named Qsun, whose operation is underlined by quantum state wave-functions.
We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.
arXiv Detail & Related papers (2021-07-22T09:37:31Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.