Heterogeneous Graph Collaborative Filtering
- URL: http://arxiv.org/abs/2011.06807v2
- Date: Wed, 18 Nov 2020 07:34:12 GMT
- Title: Heterogeneous Graph Collaborative Filtering
- Authors: Zekun Li, Yujia Zheng, Shu Wu, Xiaoyu Zhang, Liang Wang
- Abstract summary: We propose to model user-item interactions as a heterogeneous graph which consists of not only user-item edges indicating their interaction but also user-user edges indicating their similarity.
We develop heterogeneous graph collaborative filtering (HGCF), a GCN-based framework which can explicitly capture both the interaction signal and similarity signal.
- Score: 25.05199172369437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based collaborative filtering (CF) algorithms have gained increasing
attention. Existing work in this literature usually models the user-item
interactions as a bipartite graph, where users and items are two isolated node
sets and edges between them indicate their interactions. Then, the unobserved
preference of users can be exploited by modeling high-order connectivity on the
bipartite graph. In this work, we propose to model user-item interactions as a
heterogeneous graph which consists of not only user-item edges indicating their
interaction but also user-user edges indicating their similarity. We develop
heterogeneous graph collaborative filtering (HGCF), a GCN-based framework which
can explicitly capture both the interaction signal and similarity signal
through embedding propagation on the heterogeneous graph. Since the
heterogeneous graph is more connected than the bipartite graph, the sparsity
issue can be alleviated and the demand for expensive high-order connectivity
modeling can be lowered. Extensive experiments conducted on three public
benchmarks demonstrate its superiority over the state-of-the-arts. Further
analysis verifies the importance of user-user edges in the graph, justifying
the rationality and effectiveness of HGCF.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
We propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC)
AHGFC learns the node embedding based on the graph joint aggregation matrix.
Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.
arXiv Detail & Related papers (2024-01-05T07:27:29Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Label-Wise Message Passing Graph Neural Network on Heterophilic Graphs [20.470934944907608]
We investigate a novel framework that performs well on graphs with either homophily or heterophily.
In label-wise message-passing, neighbors with similar pseudo labels will be aggregated together.
We also propose a bi-level optimization method to automatically select the model for graphs with homophily/heterophily.
arXiv Detail & Related papers (2021-10-15T14:49:45Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.