Reinforcement Learning Control of Constrained Dynamic Systems with
Uniformly Ultimate Boundedness Stability Guarantee
- URL: http://arxiv.org/abs/2011.06882v1
- Date: Fri, 13 Nov 2020 12:41:56 GMT
- Title: Reinforcement Learning Control of Constrained Dynamic Systems with
Uniformly Ultimate Boundedness Stability Guarantee
- Authors: Minghao Han, Yuan Tian, Lixian Zhang, Jun Wang, Wei Pan
- Abstract summary: Reinforcement learning (RL) is promising for complicated nonlinear control problems.
The data-based learning approach is notorious for not guaranteeing stability, which is the most fundamental property for any control system.
In this paper, the classic Lyapunov's method is explored to analyze the uniformly ultimate boundedness stability (UUB) solely based on data.
- Score: 12.368097742148128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is promising for complicated stochastic nonlinear
control problems. Without using a mathematical model, an optimal controller can
be learned from data evaluated by certain performance criteria through
trial-and-error. However, the data-based learning approach is notorious for not
guaranteeing stability, which is the most fundamental property for any control
system. In this paper, the classic Lyapunov's method is explored to analyze the
uniformly ultimate boundedness stability (UUB) solely based on data without
using a mathematical model. It is further shown how RL with UUB guarantee can
be applied to control dynamic systems with safety constraints. Based on the
theoretical results, both off-policy and on-policy learning algorithms are
proposed respectively. As a result, optimal controllers can be learned to
guarantee UUB of the closed-loop system both at convergence and during
learning. The proposed algorithms are evaluated on a series of robotic
continuous control tasks with safety constraints. In comparison with the
existing RL algorithms, the proposed method can achieve superior performance in
terms of maintaining safety. As a qualitative evaluation of stability, our
method shows impressive resilience even in the presence of external
disturbances.
Related papers
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Sample-efficient Safe Learning for Online Nonlinear Control with Control
Barrier Functions [35.9713619595494]
Reinforcement Learning and continuous nonlinear control have been successfully deployed in multiple domains of complicated sequential decision-making tasks.
Given the exploration nature of the learning process and the presence of model uncertainty, it is challenging to apply them to safety-critical control tasks.
We propose a emphprovably efficient episodic safe learning framework for online control tasks.
arXiv Detail & Related papers (2022-07-29T00:54:35Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Actor-Critic Reinforcement Learning for Control with Stability Guarantee [9.400585561458712]
Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks.
However, stability is not guaranteed in model-free RL by solely using data.
We propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunov's method in control theory.
arXiv Detail & Related papers (2020-04-29T16:14:30Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator.
The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability.
The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric.
arXiv Detail & Related papers (2020-02-21T16:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.