Probabilistic robust linear quadratic regulators with Gaussian processes
- URL: http://arxiv.org/abs/2105.07668v1
- Date: Mon, 17 May 2021 08:36:18 GMT
- Title: Probabilistic robust linear quadratic regulators with Gaussian processes
- Authors: Alexander von Rohr, Matthias Neumann-Brosig, Sebastian Trimpe
- Abstract summary: Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
- Score: 73.0364959221845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic models such as Gaussian processes (GPs) are powerful tools to
learn unknown dynamical systems from data for subsequent use in control design.
While learning-based control has the potential to yield superior performance in
demanding applications, robustness to uncertainty remains an important
challenge. Since Bayesian methods quantify uncertainty of the learning results,
it is natural to incorporate these uncertainties into a robust design. In
contrast to most state-of-the-art approaches that consider worst-case
estimates, we leverage the learning method's posterior distribution in the
controller synthesis. The result is a more informed and, thus, more efficient
trade-off between performance and robustness. We present a novel controller
synthesis for linearized GP dynamics that yields robust controllers with
respect to a probabilistic stability margin. The formulation is based on a
recently proposed algorithm for linear quadratic control synthesis, which we
extend by giving probabilistic robustness guarantees in the form of credibility
bounds for the system's stability.Comparisons to existing methods based on
worst-case and certainty-equivalence designs reveal superior performance and
robustness properties of the proposed method.
Related papers
- Distributionally Robust Policy and Lyapunov-Certificate Learning [13.38077406934971]
Key challenge in designing controllers with stability guarantees for uncertain systems is the accurate determination of and adaptation to shifts in model parametric uncertainty during online deployment.
We tackle this with a novel distributionally robust formulation of the Lyapunov derivative chance constraint ensuring a monotonic decrease of the Lyapunov certificate.
We show that, for the resulting closed-loop system, the global stability of its equilibrium can be certified with high confidence, even with Out-of-Distribution uncertainties.
arXiv Detail & Related papers (2024-04-03T18:57:54Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States [4.4820711784498]
This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states.
The effectiveness of the proposed method is demonstrated in a numerical simulation.
arXiv Detail & Related papers (2023-03-31T11:06:09Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - The Impact of Data on the Stability of Learning-Based Control- Extended
Version [63.97366815968177]
We propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions.
arXiv Detail & Related papers (2020-11-20T19:10:01Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Reinforcement Learning Control of Constrained Dynamic Systems with
Uniformly Ultimate Boundedness Stability Guarantee [12.368097742148128]
Reinforcement learning (RL) is promising for complicated nonlinear control problems.
The data-based learning approach is notorious for not guaranteeing stability, which is the most fundamental property for any control system.
In this paper, the classic Lyapunov's method is explored to analyze the uniformly ultimate boundedness stability (UUB) solely based on data.
arXiv Detail & Related papers (2020-11-13T12:41:56Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator.
The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability.
The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric.
arXiv Detail & Related papers (2020-02-21T16:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.