Robotic self-representation improves manipulation skills and transfer
learning
- URL: http://arxiv.org/abs/2011.06985v1
- Date: Fri, 13 Nov 2020 16:04:58 GMT
- Title: Robotic self-representation improves manipulation skills and transfer
learning
- Authors: Phuong D.H. Nguyen, Manfred Eppe and Stefan Wermter
- Abstract summary: We develop a model that learns bidirectional action-effect associations to encode the representations of body schema and the peripersonal space from multisensory information.
We demonstrate that this approach significantly stabilizes the learning-based problem-solving under noisy conditions and that it improves transfer learning of robotic manipulation skills.
- Score: 14.863872352905629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive science suggests that the self-representation is critical for
learning and problem-solving. However, there is a lack of computational methods
that relate this claim to cognitively plausible robots and reinforcement
learning. In this paper, we bridge this gap by developing a model that learns
bidirectional action-effect associations to encode the representations of body
schema and the peripersonal space from multisensory information, which is named
multimodal BidAL. Through three different robotic experiments, we demonstrate
that this approach significantly stabilizes the learning-based problem-solving
under noisy conditions and that it improves transfer learning of robotic
manipulation skills.
Related papers
- Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
We introduce Self-Explainable Affordance learning (SEA) with embodied caption.
SEA enables robots to articulate their intentions and bridge the gap between explainable vision-language caption and visual affordance learning.
We propose a novel model to effectively combine affordance grounding with self-explanation in a simple but efficient manner.
arXiv Detail & Related papers (2024-04-08T15:22:38Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
We think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process.
In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model.
We test our approach on two learning tasks - object detection and imitation learning.
arXiv Detail & Related papers (2023-08-29T14:23:44Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Transformer-based deep imitation learning for dual-arm robot
manipulation [5.3022775496405865]
In a dual-arm manipulation setup, the increased number of state dimensions caused by the additional robot manipulators causes distractions.
We address this issue using a self-attention mechanism that computes dependencies between elements in a sequential input and focuses on important elements.
A Transformer, a variant of self-attention architecture, is applied to deep imitation learning to solve dual-arm manipulation tasks in the real world.
arXiv Detail & Related papers (2021-08-01T07:42:39Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Metric-Based Imitation Learning Between Two Dissimilar Anthropomorphic
Robotic Arms [29.08134072341867]
One major challenge in imitation learning is the correspondence problem.
We introduce a distance measure between dissimilar embodiments.
We find that the measure is well suited for describing the similarity between embodiments and for learning imitation policies by distance.
arXiv Detail & Related papers (2020-02-25T19:47:19Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.