Transformer-based deep imitation learning for dual-arm robot
manipulation
- URL: http://arxiv.org/abs/2108.00385v2
- Date: Mon, 26 Feb 2024 10:02:26 GMT
- Title: Transformer-based deep imitation learning for dual-arm robot
manipulation
- Authors: Heecheol Kim, Yoshiyuki Ohmura, Yasuo Kuniyoshi
- Abstract summary: In a dual-arm manipulation setup, the increased number of state dimensions caused by the additional robot manipulators causes distractions.
We address this issue using a self-attention mechanism that computes dependencies between elements in a sequential input and focuses on important elements.
A Transformer, a variant of self-attention architecture, is applied to deep imitation learning to solve dual-arm manipulation tasks in the real world.
- Score: 5.3022775496405865
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep imitation learning is promising for solving dexterous manipulation tasks
because it does not require an environment model and pre-programmed robot
behavior. However, its application to dual-arm manipulation tasks remains
challenging. In a dual-arm manipulation setup, the increased number of state
dimensions caused by the additional robot manipulators causes distractions and
results in poor performance of the neural networks. We address this issue using
a self-attention mechanism that computes dependencies between elements in a
sequential input and focuses on important elements. A Transformer, a variant of
self-attention architecture, is applied to deep imitation learning to solve
dual-arm manipulation tasks in the real world. The proposed method has been
tested on dual-arm manipulation tasks using a real robot. The experimental
results demonstrated that the Transformer-based deep imitation learning
architecture can attend to the important features among the sensory inputs,
therefore reducing distractions and improving manipulation performance when
compared with the baseline architecture without the self-attention mechanisms.
Related papers
- Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
Body Transformer (BoT) is an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process.
We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture.
The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency.
arXiv Detail & Related papers (2024-08-12T17:31:28Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
We present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN)
ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning.
Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks.
arXiv Detail & Related papers (2023-06-30T20:35:22Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Memory-based gaze prediction in deep imitation learning for robot
manipulation [2.857551605623957]
The proposed algorithm uses a Transformer-based self-attention architecture for the gaze estimation based on sequential data to implement memory.
The proposed method was evaluated with a real robot multi-object manipulation task that requires memory of the previous states.
arXiv Detail & Related papers (2022-02-10T07:30:08Z) - In-air Knotting of Rope using Dual-Arm Robot based on Deep Learning [8.365690203298966]
We report the successful execution of in-air knotting of rope using a dual-arm two-finger robot based on deep learning.
A manual description of appropriate robot motions corresponding to all object states is difficult to be prepared in advance.
We constructed a model that instructed the robot to perform bowknots and overhand knots based on two deep neural networks trained using the data gathered from its sensorimotor.
arXiv Detail & Related papers (2021-03-17T02:11:58Z) - Robotic self-representation improves manipulation skills and transfer
learning [14.863872352905629]
We develop a model that learns bidirectional action-effect associations to encode the representations of body schema and the peripersonal space from multisensory information.
We demonstrate that this approach significantly stabilizes the learning-based problem-solving under noisy conditions and that it improves transfer learning of robotic manipulation skills.
arXiv Detail & Related papers (2020-11-13T16:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.