Reinforcement Learning Control of a Biomechanical Model of the Upper
Extremity
- URL: http://arxiv.org/abs/2011.07105v2
- Date: Wed, 20 Apr 2022 09:24:51 GMT
- Title: Reinforcement Learning Control of a Biomechanical Model of the Upper
Extremity
- Authors: Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, J\"org
M\"uller
- Abstract summary: We learn a control policy using a motor babbling approach as implemented in reinforcement learning.
We use a state-of-the-art biomechanical model, which includes seven actuated degrees of freedom.
To deal with the curse of dimensionality, we use a simplified second-order muscle model, acting at each degree of freedom instead of individual muscles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the infinite number of possible movements that can be produced, humans
are commonly assumed to choose those that optimize criteria such as minimizing
movement time, subject to certain movement constraints like signal-dependent
and constant motor noise. While so far these assumptions have only been
evaluated for simplified point-mass or planar models, we address the question
of whether they can predict reaching movements in a full skeletal model of the
human upper extremity. We learn a control policy using a motor babbling
approach as implemented in reinforcement learning, using aimed movements of the
tip of the right index finger towards randomly placed 3D targets of varying
size. We use a state-of-the-art biomechanical model, which includes seven
actuated degrees of freedom. To deal with the curse of dimensionality, we use a
simplified second-order muscle model, acting at each degree of freedom instead
of individual muscles. The results confirm that the assumptions of
signal-dependent and constant motor noise, together with the objective of
movement time minimization, are sufficient for a state-of-the-art skeletal
model of the human upper extremity to reproduce complex phenomena of human
movement, in particular Fitts' Law and the 2/3 Power Law. This result supports
the notion that control of the complex human biomechanical system can plausibly
be determined by a set of simple assumptions and can easily be learned.
Related papers
- HUMOS: Human Motion Model Conditioned on Body Shape [54.20419874234214]
We introduce a new approach to develop a generative motion model based on body shape.
We show that it's possible to train this model using unpaired data.
The resulting model generates diverse, physically plausible, and dynamically stable human motions.
arXiv Detail & Related papers (2024-09-05T23:50:57Z) - Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings.
We present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data.
We propose a model that can multitask, adapt continually, anticipate movements, and refine locomotion.
arXiv Detail & Related papers (2024-05-02T09:22:54Z) - Self Model for Embodied Intelligence: Modeling Full-Body Human Musculoskeletal System and Locomotion Control with Hierarchical Low-Dimensional Representation [22.925312305575183]
We build a musculoskeletal model (MS-Human-700) with 90 body segments, 206 joints, and 700 muscle-tendon units.
We develop a new algorithm using low-dimensional representation and hierarchical deep reinforcement learning to achieve state-of-the-art full-body control.
arXiv Detail & Related papers (2023-12-09T05:42:32Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Natural and Robust Walking using Reinforcement Learning without
Demonstrations in High-Dimensional Musculoskeletal Models [29.592874007260342]
Humans excel at robust bipedal walking in complex natural environments.
It is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem.
arXiv Detail & Related papers (2023-09-06T13:20:31Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - Learning Disentangled Representations for Controllable Human Motion
Prediction [24.004809791890445]
We propose a novel framework to learn disentangled representations for controllable human motion prediction.
Our approach is capable of predicting state-of-the-art controllable human motions both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-07-04T13:11:11Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
Skeletal and Musculoskeletal human models were considered for motions in the sagittal plane.
Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions.
arXiv Detail & Related papers (2021-05-15T16:33:24Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.