Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
- URL: http://arxiv.org/abs/2503.14637v1
- Date: Tue, 18 Mar 2025 18:37:49 GMT
- Title: Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
- Authors: Merkourios Simos, Alberto Silvio Chiappa, Alexander Mathis,
- Abstract summary: We present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control.<n>We demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data.<n>KINESIS generates muscle activity patterns that correlate well with human EMG activity.
- Score: 47.423243831156285
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.
Related papers
- Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations [64.98299559470503]
Muscles in Time (MinT) is a large-scale synthetic muscle activation dataset.
It contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands.
We show results on neural network-based muscle activation estimation from human pose sequences.
arXiv Detail & Related papers (2024-10-31T18:28:53Z) - Self Model for Embodied Intelligence: Modeling Full-Body Human Musculoskeletal System and Locomotion Control with Hierarchical Low-Dimensional Representation [22.925312305575183]
We build a musculoskeletal model (MS-Human-700) with 90 body segments, 206 joints, and 700 muscle-tendon units.<n>We develop a new algorithm using low-dimensional representation and hierarchical deep reinforcement learning to achieve state-of-the-art full-body control.
arXiv Detail & Related papers (2023-12-09T05:42:32Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Natural and Robust Walking using Reinforcement Learning without
Demonstrations in High-Dimensional Musculoskeletal Models [29.592874007260342]
Humans excel at robust bipedal walking in complex natural environments.
It is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem.
arXiv Detail & Related papers (2023-09-06T13:20:31Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
Skeletal and Musculoskeletal human models were considered for motions in the sagittal plane.
Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions.
arXiv Detail & Related papers (2021-05-15T16:33:24Z) - I am Robot: Neuromuscular Reinforcement Learning to Actuate Human Limbs
through Functional Electrical Stimulation [5.066245628617513]
Functional Electrical Stimulation (FES) is an established technique for contracting muscles by stimulating the skin above a muscle to induce its contraction.
We present our Deep Reinforcement Learning approach to the control of human muscles with FES, using a recurrent neural network for dynamic state representation.
Our results show that our controller can learn to manipulate human muscles, applying appropriate levels of stimulation to achieve the given tasks while compensating for advancing muscle fatigue which arises throughout the tasks.
arXiv Detail & Related papers (2021-03-09T10:58:51Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
Video-based human motion transfer creates video animations of humans following a source motion.
We present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations.
In the experimental results, we significantly outperform the state-of-the-art in terms of video realism.
arXiv Detail & Related papers (2020-12-20T16:54:38Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
We propose a physics-based universal neural controller (UniCon) that learns to master thousands of motions with different styles by learning on large-scale motion datasets.
UniCon can support keyboard-driven control, compose motion sequences drawn from a large pool of locomotion and acrobatics skills and teleport a person captured on video to a physics-based virtual avatar.
arXiv Detail & Related papers (2020-11-30T18:51:16Z) - Reinforcement Learning of Musculoskeletal Control from Functional
Simulations [3.94716580540538]
In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder.
Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.
arXiv Detail & Related papers (2020-07-13T20:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.