論文の概要: Reinforced Molecular Optimization with Neighborhood-Controlled Grammars
- arxiv url: http://arxiv.org/abs/2011.07225v1
- Date: Sat, 14 Nov 2020 05:42:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 13:54:23.592805
- Title: Reinforced Molecular Optimization with Neighborhood-Controlled Grammars
- Title(参考訳): 近傍制御文法を用いた強化分子最適化
- Authors: Chencheng Xu, Qiao Liu, Minlie Huang, Tao Jiang
- Abstract要約: 分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
- 参考スコア(独自算出の注目度): 63.84003497770347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in the pharmaceutical industry is to design novel molecules
with specific desired properties, especially when the property evaluation is
costly. Here, we propose MNCE-RL, a graph convolutional policy network for
molecular optimization with molecular neighborhood-controlled embedding
grammars through reinforcement learning. We extend the original
neighborhood-controlled embedding grammars to make them applicable to molecular
graph generation and design an efficient algorithm to infer grammatical
production rules from given molecules. The use of grammars guarantees the
validity of the generated molecular structures. By transforming molecular
graphs to parse trees with the inferred grammars, the molecular structure
generation task is modeled as a Markov decision process where a policy gradient
strategy is utilized. In a series of experiments, we demonstrate that our
approach achieves state-of-the-art performance in a diverse range of molecular
optimization tasks and exhibits significant superiority in optimizing molecular
properties with a limited number of property evaluations.
- Abstract(参考訳): 製薬業界における大きな課題は、特に特性評価が費用がかかる場合に、特定の望ましい性質を持つ新規分子を設計することである。
本稿では,分子近傍制御型埋め込み文法を用いた分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
近傍制御埋め込み文法を拡張し,分子グラフ生成に適用できるようにし,与えられた分子から文法生成規則を推定する効率的なアルゴリズムを設計した。
文法の使用は、生成された分子構造の妥当性を保証する。
推論された文法で木を解析するために分子グラフを変換することにより、分子構造生成タスクはポリシー勾配戦略を利用するマルコフ決定プロセスとしてモデル化される。
一連の実験において,本手法は様々な分子最適化タスクにおいて最先端性能を実現し,限られた特性評価で分子特性を最適化する上で大きな優位性を示す。
関連論文リスト
- Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
変換器を用いた拡散言語モデル(TransDLM)を用いたテキスト誘導多目的分子最適化手法を提案する。
TransDLMは標準化された化学命名法を分子の意味表現として利用し、プロパティ要求をテキスト記述に暗黙的に埋め込む。
提案手法は, 分子構造類似性を最適化し, ベンチマークデータセットの化学的特性を向上するための最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-10-17T14:30:27Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Extracting Molecular Properties from Natural Language with Multimodal
Contrastive Learning [1.3717673827807508]
本研究では,分子特性情報を自然言語からグラフ表現へ伝達する方法について検討する。
我々は, テキスト検索を改善するために, ニューラル関連評価戦略を実装し, 化学的に有意な分子グラフ増強戦略を導入する。
グラフモダリティだけで事前学習されたモデルに対するAUROCの利得は+4.26%、最近提案された分子グラフ/テキストの対照的に訓練されたMoMuモデルに比べて+1.54%向上する。
論文 参考訳(メタデータ) (2023-07-22T10:32:58Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Fragment-based Sequential Translation for Molecular Optimization [23.152338167332374]
本稿では,分子断片を用いた分子生成のためのフレキシブルな編集パラダイムを提案する。
我々は変分オートエンコーダを用いて分子断片をコヒーレント潜在空間に符号化する。
そして、分子を編集して複雑な化学特性空間を探索する語彙として利用します。
論文 参考訳(メタデータ) (2021-10-26T21:20:54Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
分子特性予測問題に対する特性認識適応関係ネットワーク(PAR)を提案する。
我々のPARは、既存のグラフベースの分子エンコーダと互換性があり、プロパティ対応分子埋め込みとモデル分子関係グラフを得る能力も備えている。
論文 参考訳(メタデータ) (2021-07-16T16:22:30Z) - Graph Polish: A Novel Graph Generation Paradigm for Molecular
Optimization [7.1696593196695035]
本稿では,従来の「二言語翻訳」タスクから「単言語」タスクへ分子最適化を変換する新しい分子最適化パラダイムであるグラフポーランドを提案する。
本稿では,最適化段階における長期的依存関係を捉えるために,効果的で効率的な学習フレームワークT&Sの研磨法を提案する。
論文 参考訳(メタデータ) (2020-08-14T08:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。