SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images
- URL: http://arxiv.org/abs/2011.07534v1
- Date: Sun, 15 Nov 2020 14:01:24 GMT
- Title: SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images
- Authors: Chang Qi, Junyang Chen, Guizhi Xu, Zhenghua Xu, Thomas Lukasiewicz,
Yang Liu
- Abstract summary: We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
- Score: 47.35184075381965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently deep learning methods, in particular, convolutional neural networks
(CNNs), have led to a massive breakthrough in the range of computer vision.
Also, the large-scale annotated dataset is the essential key to a successful
training procedure. However, it is a huge challenge to get such datasets in the
medical domain. Towards this, we present a data augmentation method for
generating synthetic medical images using cycle-consistency Generative
Adversarial Networks (GANs). We add semi-supervised attention modules to
generate images with convincing details. We treat tumor images and normal
images as two domains. The proposed GANs-based model can generate a tumor image
from a normal image, and in turn, it can also generate a normal image from a
tumor image. Furthermore, we show that generated medical images can be used for
improving the performance of ResNet18 for medical image classification. Our
model is applied to three limited datasets of tumor MRI images. We first
generate MRI images on limited datasets, then we trained three popular
classification models to get the best model for tumor classification. Finally,
we train the classification model using real images with classic data
augmentation methods and classification models using synthetic images. The
classification results between those trained models showed that the proposed
SAG-GAN data augmentation method can boost Accuracy and AUC compare with
classic data augmentation methods. We believe the proposed data augmentation
method can apply to other medical image domains, and improve the accuracy of
computer-assisted diagnosis.
Related papers
- Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
This research presents a machine-learning approach for tumor detection in medical images using convolutional neural networks (CNNs)
The study focuses on preprocessing techniques to enhance image features relevant to tumor detection, followed by developing and training a CNN model for accurate classification.
Experimental results demonstrate the effectiveness of the proposed approach in accurately detecting tumors in medical images.
arXiv Detail & Related papers (2024-02-25T23:49:05Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - GAN-GA: A Generative Model based on Genetic Algorithm for Medical Image
Generation [0.0]
Generative models offer a promising solution for addressing medical image shortage problems.
This paper proposes the GAN-GA, a generative model optimized by embedding a genetic algorithm.
The proposed model enhances image fidelity and diversity while preserving distinctive features.
arXiv Detail & Related papers (2023-12-30T20:16:45Z) - Generating 3D Brain Tumor Regions in MRI using Vector-Quantization
Generative Adversarial Networks [5.380977479547755]
We present a novel framework that uses vector-quantization GAN and a transformer incorporating masked token modeling to generate high-resolution and diverse 3D brain tumor ROIs.
Our proposed method has the potential to facilitate an accurate diagnosis of rare brain tumors using MRI scans.
arXiv Detail & Related papers (2023-10-02T14:39:10Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Deep Learning models for benign and malign Ocular Tumor Growth
Estimation [3.1558405181807574]
Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data.
A strategy for the selection of a proper model is presented here.
arXiv Detail & Related papers (2021-07-09T05:40:25Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.